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Abstract We are concerned with the global weak continuity of the Cartan
structural system — or equivalently, the Gauss–Codazzi–Ricci system — on
semi-Riemannian manifolds with lower regularity. For this purpose, we first
formulate and prove a geometric compensated compactness theorem on vec-
tor bundles over semi-Riemannian manifolds with lower regularity (Theorem
3.2), extending the classical quadratic theorem of compensated compactness.
We then deduce the Lp weak continuity of the Cartan structural system for
p > 2: For a family {Wε} of connection 1-forms on a semi-Riemannian mani-
fold (M, g), if {Wε} is uniformly bounded in Lp and satisfies the Cartan struc-
tural system, then any weak Lp limit of {Wε} is also a solution of the Cartan
structural system. Moreover, it is proved that isometric immersions of semi-
Riemannian manifolds into semi-Euclidean spaces can be constructed from the
weak solutions of the Cartan structural system or the Gauss–Codazzi–Ricci
system (Theorem 5.1), which leads to the Lp weak continuity of the Gauss–
Codazzi–Ricci system on semi-Riemannian manifolds. As further applications,
the weak continuity of Einstein’s constraint equations, general immersed hy-
persurfaces, and the quasilinear wave equations is also established.
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1 Introduction

We are concerned with isometric immersions of semi-Riemannian man-
ifolds with arbitrary signature into semi-Euclidean spaces. We establish the
weak continuity of two fundamental systems of nonlinear partial differential
equations (PDEs): the Cartan structural system and the Gauss–Codazzi–Ricci
(GCR) system, which constitute the compatibility equations for the existence
of isometric immersions.

The isometric immersion problem has been of fundamental importance
in the development of modern differential geometry. It has led to various new
techniques and ideas in nonlinear PDEs, nonlinear analysis, and geometric
analysis (cf. [8,33,34,63] and the references cited therein). On the other hand,
it has wide applications. For example, in theoretical physics, the manners
in which our 4-dimensional space-time is immersed in the ambient universe
correspond to different cosmological models (cf. Mars–Senovilla [45,46]), and
the isometric immersion of round spheres into warped product manifolds is
central to recent versions of quasi-local mass (cf. Guan–Lu [32] and Wang–
Yau [62]). Moreover, the isometric immersions of semi-Riemannian manifolds
with lower regularity are fundamental in many scientific areas. For example,
such immersions arise in the thin-shell model for gravitational source and the
junction condition for gluing disjoint space-times; see [2,19,29] for the details.

In the classical work [50], Nash established the existence of isometric em-
beddings of Riemannian manifolds with Ck metrics, k ≥ 3, into the Euclidean
spaces of high dimensions. The analogous problem for semi-Riemannian man-
ifolds (i.e., the metrics are not necessarily positive-definite) is posed as a nat-
ural extension. More importantly, the isometric immersion problem of semi-
Riemannian manifolds is fundamental in general relativity and Lorentzian ge-
ometry. Clarke [18] proved the existence theorem of isometric embeddings of
Ck semi-Riemannian manifolds into semi-Euclidean spaces, under additional
hypotheses on the signature. Despite these general existence theorems, the
analysis for isometric immersions of semi-Riemannian manifolds appears more
challenging than its Riemannian analog. In particular, the Laplace–Beltrami
operator is no longer elliptic, thus precludes the standard elliptic PDE ma-
chineries. See Goenner [30], Greene [31], and the references cited therein for
the earlier rigorous mathematical analysis on isometric immersions of semi-
Riemannian manifolds.
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Motivated by both mathematical and physical importance discussed
above, in this paper, we study the isometric immersions of semi-Riemannian
manifolds with lower regularity. One of the fundamental tools for investigating
the isometric immersions is the GCR system (cf. [8,13,14,30,36,41]), which
describes the geometry of the ambient space in terms of the geometry of the
tangential and normal directions of the immersed submanifold. We are inter-
ested in the global weak continuity of the GCR system, as well as the global
weak rigidity of the corresponding isometric immersions and curvatures.

The analysis of the GCR system encompasses several challenges, primar-
ily because they do not have a fixed type — elliptic, parabolic, or hyperbolic —
in general. Even in the Riemannian case, when the immersed manifold has di-
mension higher than 3, it is proved by Bryant–Griffith–Yang [8] that the GCR
system has no definite type. The novel observation by Chen–Slemrod–Wang in
[13,14] (also see [12]) shows that the GCR system for Riemannian manifolds
possesses an intrinsic div-curl structure, so that the compensated compactness
techniques for nonlinear analysis can be applied, which is independent of the
types of the system.

In order to employ the compensated compactness techniques in semi-
Riemannian settings, however, we meet with further complications. First, the
effective proofs of the div-curl lemma rely essentially on the ellipticity of
the Laplace–Beltrami operator; cf. Evans [28], Robbin–Rogers–Temple [52],
Kozono–Yanagisawa [39], Chen–Li [12], and the references cited therein. This
does not hold for semi-Riemannian manifolds. Moreover, the non-trivial signa-
tures of the semi-Riemannian metrics make it difficult to identify the div-curl
structure globally.

To overcome the new complications, we further exploit the geometry of
isometric immersions of semi-Riemannian submanifolds. Rather than tackling
the GCR system directly, we first establish the weak continuity of the Cartan
structural system. This is proved to be equivalent to the GCR system, even
for the semi-Riemannian manifolds with lower regularity in W 2,p. The Cartan
structural system possesses a natural quadratic structure. For this purpose,
we first establish a global, intrinsic compensated compactness result (Theo-
rem 3.2) in the setting of vector bundles over semi-Riemannian manifolds, and
then apply it to give a rigorous proof of the weak continuity of the Cartan
structural system. We emphasize the global and intrinsic nature of these re-
sults, in the sense that their formulations are independent of local coordinate
systems.

The compensated compactness techniques have been developed in the
study of nonlinear PDEs in the Euclidean space Rd, especially for nonlinear
conservation laws such as the Euler equations in fluid mechanics; see [11,
24,28] and the references therein. One of the major results in the theory of
compensated compactness is the quadratic theorem in Rd (see Murat [49] and
Tartar [59]). For our purpose, we establish a generalized quadratic theorem
that is of global and intrinsic nature on vector bundles. Our crucial observation
is that the first-order differential constraints in the quadratic theorem on Rd
can be replaced by more general assumptions on the principal symbol of the
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associated differential operators, while the principal symbol is diffeomorphism-
invariant on manifolds. This leads to an intrinsic formulation of the quadratic
theorem on vector bundles over semi-Riemannian manifolds.

Other generalizations of the quadratic theorem were established in the
literature. Mĭsur–Mitrović in [48] studied the weak convergence of quadratic

expressions
∑N
i,j=1 qiju

i
εv
j
ε, where {uε} and {vε} are weakly convergent in

Lp(Rd;RN ) and Lp
′
(Rd;RN ), respectively, for 1

p + 1
p′ ≤ 1. For this, coefficients

qij , i, j = 1, · · · , N , are allowed to depend on x ∈ Rd, the conditions involve
fractional derivatives, and the idea of H-distributions is used in the proof; also
see §3 in Mĭsur [47]. In contrast, our generalized quadratic theorem is geometric
and global in nature, which serves naturally for our purpose to establish the
weak continuity of both the Cartan structural system and the GCR system.

The results and techniques established in this paper have applications
to semi-Riemannian geometry, from the perspectives of both mathematics and
physics. For example, we deduce the weak rigidity of isometric immersions
of semi-Riemannian manifolds by using the weak continuity of the Cartan
structural system or the GCR system. The realizability of isometric immersions
of semi-Riemannian manifolds with lower regularity from the weak solutions
of the Cartan structural system or the GCR system (Theorem 5.1) is proved
along the way. In addition, we demonstrate the weak continuity properties
of Einstein’s constraint equations, quasilinear wave equations, and degenerate
hypersurfaces in space-time.

We emphasize that, in this paper, we are concerned mainly with semi-
Riemannian manifolds (M, g) with lower regularity, which means that M is
parametrized by W 2,p

loc maps, or that metric g is in W 1,p
loc ∩ L∞loc. The weak

continuity of the GCR system and the Cartan structural system is established
in such regularity classes with p > 2, regardless of the dimension of M . In
particular, when dim M ≥ 3, these weak continuity results cannot be deduced
from the realization theorem of isometric immersions from the GCR system,
or equivalently the Cartan structural system, since it can be proved so far only
under the stronger assumption: p > dim M . This imposes considerable addi-
tional difficulties. In fact, apart from the realization theorem (Theorem 5.1),
we will restrict ourselves only to p > 2 (rather than p > dim M) everywhere
else throughout the paper.

We remark in passing that the W 2,p continuity of the GCR and Cartan
structural systems may also be established via computing carefully in local
coordinate systems, by utilizing the compensated compactness techniques in
the flat space Rd (see, e.g., Chen–Slemrod–Wang [14] and Robbin–Rogers–
Temple [52]). However, the compensated compactness results established in
the semi-Riemannian setting in this paper not only provide a direct intrinsic
proof of the W 2,p continuity of the Cartan structural systems, but also are
of independent interest. In particular, the global and intrinsic formulation of
Theorem 3.2 contributes to the theory of compensated compactness and its
further applications.
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The rest of this paper is organized as follows: In §2, we review the
Cartan structural system and the basics of the semi-Riemannian submanifold
theory. The bundle-theoretic perspectives are emphasized. In §3, we establish
a global intrinsic compensated compactness theorem on vector bundles over
semi-Riemannian manifolds, which is also extended to locally compact Abelian
groups. Employing the results in §3, we deduce the weak continuity of the Car-
tan structural system in §4. Next, in §5, we solve the realization problem (i.e.,
the construction of isometric immersions from the GCR system, or equiva-
lently the Cartan structural system) on simply-connected semi-Riemannian
manifolds with lower regularity. Finally, in §6, we discuss further applications
of the theorems and techniques established in earlier sections. In particular,
we demonstrate the weak continuity of Einstein’s constraint equations, quasi-
linear wave equations with the null structure, and general hypersurfaces in
space-time. For completeness, the proofs of several semi-Riemannian geomet-
ric results and facts, as well as the proof of Theorem 3.5 (the generalized
quadratic theorem on locally compact Abelian groups), are presented in Ap-
pendices A and B.

2 The Cartan Structural System and Isometric Immersions of
Semi-Riemannian Manifolds

In this section, we discuss the Cartan structural system. One of our
motivations comes from the isometric immersion problem for semi-Riemannian
manifolds: the Cartan structural system is known to be equivalent to the
GCR system, since both systems are the classical compatibility equations for
the existence of isometric immersions. The isometric immersion problem is an
important topic in theoretical physics and differential geometry. In particular,
it is closely related to the definition of quasi-local mass in space-time (see
Brown–York [6], Wang–Yau [62], and the references therein).

We first review the submanifold theory in semi-Riemannian geometry.
Then we discuss the derivation of the GCR system and the formulation of
the Cartan structural system. Our exposition follows essentially from O’Neill
[51]; nevertheless, several ad hoc constructions therein are clarified by using
the language of vector bundles.

2.1 Semi-Riemannian Submanifold Theory

Let M be an n-dimensional manifold. It is said to be semi-Riemannian if
there exists a symmetric, non-degenerate 2-form field g on the tangent bundle
TM with constant index. Then g is known as a semi-Riemannian metric. The
semi-Riemannian metric g is non-degenerate on M if, for each x ∈ M , there
exists no v ∈ TxM \ {0} such that g(v, w) = 0 for every w ∈ TxM .

The index of the semi-Riemannian metric g on TxM is defined by

Ind(g;TxM) := max

ß
dimV :

V ⊂ TxM is a vector subspace
and g|V is negative definite

™
.
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Clearly, if M is connected, then Ind(g;TxM) is constant for all x ∈M , which
will be written as Ind(g) in the sequel. Employing the Gram–Schmidt process
to a subset U ⊂M , we can find a local orthonormal basis {ei}n1 ⊂ TU so that
g is diagonalized:

g = {gij} = δij |gij |εj for each i, j ∈ {1, 2, . . . , n},

where ε := (ε1, . . . , εn)> ∈ {−1, 1}n is called the signature of metric g. As g
is non-degenerate, it has only non-zero entries on the diagonal so that Ind(g)
equals to the number of “−1” in signature ε. For simplicity, from now on, the
semi-Riemannian manifold (M, g) is always taken to be connected, and Ind(g)
is called the index of M for the fixed metric g.

Let (›M, g̃) be a given semi-Riemannian manifold, and let M be a sub-

manifold via the embedding ι : M ↪→ (›M, g̃), i.e., both ι : M ↪→ (›M, g̃) and

dι : TM → T›M are injective. We say that (M, ι∗g̃) is a semi-Riemannian

submanifold of (›M, g̃), provided that ι∗g̃ is non-degenerate on M , where ι∗g̃
denotes the pullback of g̃ defined by

(ι∗g̃)x(v, w) := g̃ι(x)(dι(v),dι(w)) for each x ∈M and v, w ∈ TxM.

Before further development, we introduce one notation: For any vector
bundle E over M , we write Γ (E) for the space of sections of E, i.e., s : M → E
such that π ◦ s = idM , where π : E → M is the projection of bundle E onto
the base manifold.

Next, we consider ι∗T›M , the vector bundle with base manifold M and

fiber Tι(x)›M at each x ∈ M . Then Γ (ι∗T›M) consists of the vector fields in

T›M defined along M . In particular,

ι∗T›M |x := Tι(x)›M = dxι(TxM)⊕ [dxι(TxM)]⊥ ∼= TxM⊕ [dxι(TxM)]⊥, (2.1)

whenever ι is a local immersion, i.e., dι is injective in some neighborhood of
x ∈ M . Here the direct sum is taken with respect to the bilinear form g̃ on

Tι(x)›M :[
dxι(TxM)

]⊥
:=
{
v ∈ Tι(x)›M : g̃ι(x)(v,dxι(w)) = 0 for all w ∈ TxM

}
.

Eq. (2.1) is a special case of Lemma 23 in [51], which is proved by a simple
dimension-counting. It holds only when ι∗g̃ is non-degenerate, i.e., M is im-

mersed into (›M, g̃) as a semi-Riemannian submanifold. In this case, TM and

ι∗T›M are vector bundles over M and TM ⊂ ι∗T›M respectively, hence the
quotient bundle is well-defined.

Definition 2.1 The normal bundle of the isometric immersion ι : M ↪→›M is

TM⊥ :=
ι∗T›M
TM

.
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In view of Eq. (2.1), the fiber of TM⊥ at x ∈M (written as TxM
⊥) is

isomorphic to [dxι(TxM)]⊥, so that the following isomorphism of vector spaces
holds:

Tι(x)›M ∼= TxM ⊕ TxM⊥. (2.2)

The canonical projections of Tι(x)›M onto the first and second factors are called
the tangential and normal projections, denoted by

tan : ι∗T›M |x → TxM, nor : ι∗T›M |x → TxM
⊥. (2.3)

By naturality, they induce both the projections of vector fields:

tan : Γ (ι∗T›M)→ Γ (TM), nor : Γ (ι∗T›M)→ Γ (TM⊥), (2.4)

and the projections of vector fields with Sobolev regularity:

tan : W k,p(M ; ι∗T›M)→W k,p(M ;TM),

nor : W k,p(M ; ι∗T›M)→W k,p(M ;TM⊥)

for p ∈ [1,∞] and k ∈ Z.
Moreover, for notational convenience, we introduce the following con-

ventions:

Convention 2.2 We write the tangential vector fields as X,Y, Z, . . . ∈ Γ (TM)
and the normal vector fields as ξ, η, ζ, . . . ∈ Γ (TM⊥). For a generic vector field

not necessarily tangential or normal, i.e., an element in Γ (T›M) or Γ (ι∗T›M),
we use letters U, V,W . Finally, for a bundle E different from TM , TM⊥, and

ι∗T›M , we write α, β, . . . ∈ Γ (E).

Convention 2.3 Given an isometric immersion f : M →›M , write {∂a}, S,

g, ∇, R, . . . for the geometric quantities on M , and {∂̃a},‹S, g̃0,‹∇, ‹R, . . . for

the corresponding quantities on ›M .

With the orthogonal splitting of tangent and normal directions under
isometric immersions, we are ready to study the orthogonal splitting of con-

nections. Let (›M, g̃) be a semi-Riemannian manifold, and let ι : M ↪→ ›M
be an immersed semi-Riemannian submanifold. The Levi–Civita theorem says

that there exists a unique affine connection ‹∇ : Γ (T›M)× Γ (T›M)→ Γ (T›M)
which is metric-compatible and torsion-free (cf. [51]). More precisely, the fol-
lowing conditions hold for any smooth function ϕ : M → R and vector fields

U, V,W ∈ Γ (T›M):

(i) Affine: ‹∇ϕVW = ϕ‹∇VW and ‹∇V (ϕW ) = V (ϕ)W + ϕ‹∇VW ;

(ii) Compatible with metric: Ug̃(V,W ) = g̃(‹∇UV,W ) + g̃(V,‹∇UW );

(iii) Torsion-free: ‹∇VW − ‹∇WV = [V,W ].
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Recall that the connections can be pulled back by using the maps be-

tween topological manifolds (see e.g. [56]). In particular, ι : M ↪→›M induces

the pullback connection ι∗‹∇ : Γ (TM)×Γ (ι∗T›M)→ Γ (ι∗T›M) on the pullback

bundle ι∗T›M , given by

(ι∗‹∇)X(ι∗α) = ι∗(‹∇dι(X)α) for any α ∈ Γ (T›M) and X ∈ Γ (TM).

Hence, for a vector field V ∈ Γ (T›M) along M , i.e., V ∈ Γ (ι∗T›M), we have

(ι∗‹∇)XV = ι∗(‹∇dι(X)dι(V )) = ‹∇dι(X)dι(V ), (2.5)

where dι(X) and dι(V ) can be viewed as the local extensions of X ∈ Γ (TM)

and V ∈ Γ (ι∗T›M) to the vector fields in Γ (T›M).
For simplicity, we adopt the slight abuse of notations of systematically

dropping the pullback operator ι∗ (see [26,51,61]) when no confusion arises.

In effect, this amounts to viewing M as a subset of ›M , and ι as the identity
map from M to its image.

Convention 2.4 Let ι : (M, g) ↪→ (›M, g̃) be an isometric immersion of semi-

Riemannian submanifolds. Then (ι∗T›M, ι∗‹∇) is replaced by (T›M,‹∇).

With the above preparations, we now consider the following decompo-
sition of connections:‹∇XV = tan[‹∇X(tanV )] + tan[‹∇X(norV )] + nor[‹∇X(tanV )] + nor[‹∇X(norV )]

for any X ∈ Γ (TM) and V ∈ Γ (T›M), where both projections tan and nor
are as in Eq. (2.4).

Definition 2.5 Given an isometric immersion ι : (M, g) ↪→ (›M, g̃), the tan-
gential connection ∇ : Γ (TM) × Γ (TM) → Γ (TM), the second fundamen-
tal form II : Γ (TM) × Γ (TM) → Γ (TM⊥), the shape operator (associ-
ated to II) S : Γ (TM) × Γ (TM⊥) → Γ (TM), and the normal connection
∇⊥ : Γ (TM)× Γ (TM⊥)→ Γ (TM⊥) are defined as®

∇XY := tan ‹∇XY, II(X,Y ) := nor‹∇XY,
SξX := −tan‹∇Xξ, ∇⊥Xξ := nor‹∇Xξ,

for X,Y ∈ Γ (TM) and ξ ∈ Γ (TM⊥).

We note that ∇ is the Levi–Civita connection on (M, ι∗g̃), whenever ‹∇ is the

Levi–Civita connection on ›M . Moreover, II and S are related by

g̃(II(X,Y ), ξ) = g̃(SξX,Y ).

In addition, II is symmetric (equivalently, Sξ is self-adjoint) on Γ (TM). The
Riemann curvature tensor will be introduced in §2.2 below.
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Finally, with gl(n;R) denoting the space of n×n real matrices, we define
the semi-orthogonal group of Rnν as

O(ν, n− ν) :=
{
B ∈ gl(n;R) : B(v, w) = εn,νv · w for all v, w ∈ TRnν

}
,

with the signature matrix given by

εn,ν = diag(−1, · · · ,−1︸ ︷︷ ︸
ν times

, 1, · · · , 1︸ ︷︷ ︸
n− ν times

). (2.6)

In other words, O(ν, n− ν) is the group of linear isometries from Rnν to itself.
Here and in the sequel, Rnν denotes the semi-Euclidean space, i.e., manifold
Rn equipped with metric εn,ν . Likewise, the Lie group O(τ, k − τ) has the
signature matrix:

εk,τ = diag(−1, · · · ,−1︸ ︷︷ ︸
τ times

, 1, · · · , 1︸ ︷︷ ︸
k − τ times

).

We also denote by Rn+kν+τ the semi-Euclidean space Rn+k with the metric:

g̃0 = εn,ν ⊕ εk,τ .

The direct sum is understood as the block sum of matrices. Furthermore, we
denote the Lie algebra of O(n, n− ν) as o(n, n− ν).

2.2 Gauss–Codazzi–Ricci System and Isometric Immersions

The isometric immersion problem can be stated as follows: Given a semi-

Riemannian manifold (M, g) and a target semi-Riemannian manifold (›M, g̃)

of higher dimension, seek an immersion f : (M, g) ↪→ (›M, g̃) such that f(M)

is a semi-Riemannian submanifold of ›M with f∗g̃ = g.

A necessary compatibility condition for the existence of an isometric im-

mersion f is that the Riemann curvature tensor of›M should be splitted nicely
in the tangential and normal directions, i.e., in TM and TM⊥. In what follows,
we discuss the Riemann curvature on semi-Riemannian manifolds and derive
the compatibility equations, which are known as the GCR system. Again, for
our purpose, we focus on the perspectives of vector bundles, in comparison
with [51]. One further convention is introduced for notational convenience:

Convention 2.6 In the rest of the paper, we write 〈·, ·〉 for g̃(·, ·), g(·, ·), and
any other semi-Riemannian metrics, unless further specified.

Let (M, g) be an n-dimensional semi-Riemannian manifold of index ν,
and let E be a vector bundle over M with fibers F ∼= Rkτ , the semi-Euclidean
space Rk with index τ . Let ∇E be an affine connection on bundle E, i.e., a
linear map

∇E : Γ (TM)× Γ (E)→ Γ (E)
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satisfying ∇EφXα = φ∇EXα and ∇EX(φα) = X(φ)α+φ∇EXα for any φ : M → R.
This can be compactly written as

∇E(φα) = φ∇Eα+ dφ⊗ α,

once we view ∇E : Γ (E) → Ω1(E) := Γ (E ⊗ T ∗M), the space of differential
1-forms on bundle E. The Riemann curvature on bundle E is given by RE :
Γ (TM)× Γ (TM)→ Γ (EndE) as

RE(X,Y ) := [∇EX ,∇EY ]−∇E[X,Y ],

where EndE is the endomorphism bundle on E. That is, EndE is the vector
bundle over M with the typical fiber gl(F ), the group of linear transforms
from F to itself. Note that RE(X,Y, α) ∈ Γ (E) for α ∈ Γ (E). Also, RE is
often written as the (0, 4)–tensor:

RE(X,Y, α, β) := 〈RE(X,Y, α), β〉E for X,Y ∈ Γ (TM) and α, β ∈ Γ (E),

where we write 〈·, ·〉E to emphasize the bundle metric.
Now we may investigate the orthogonal splitting of the Riemann curva-

ture along the projections tan and nor (see §2.1). Given an isometric immersion

f : (M, g) → (›M, g̃), three vector bundles over M are of interest: E = TM ,

TM⊥, and f∗T›M . We denote the last bundle by T›M in light of Convention
2.2. We also fix the notations:{

∇ = ∇TM , ‹∇ = ∇T›M , ∇⊥ = ∇TM⊥ ,
R = RTM , ‹R = RT

›M , R⊥ = RTM
⊥
,

where ∇TM denotes the Levi–Civita connection on M .
In what follows, we are concerned with the special case:›M = Rn+kν+τ , Ind(›M) = Ind(M) + Ind(Rkτ ).

Thus, ‹R(X,Y ) ∈ Γ (EndT›M) constantly vanishes so that‹R(X,Y, Z1, Z2) = 0, ‹R(X,Y, Z, ξ) = 0, ‹R(X,Y, ξ, η) = 0, (2.7)

for arbitrary Z,Z1, Z2 ∈ Γ (TM) and ξ, η ∈ Γ (TM⊥). Applying projections
tan and nor to Eq. (2.7) and expressing them via R,R⊥, II, S, and ∇ as in
Definition 2.5, we deduce

Theorem 2.1 The following three equations are equivalent to Eq. (2.7):

〈II(X,Z1), II(Y,Z2)〉 − 〈II(X,Z2), II(Y, Z1)〉 = R(X,Y, Z1, Z2), (2.8)

∇⊥XII(Y,Z) = ∇⊥Y II(X,Z), (2.9)

〈[Sξ, Sη]X,Y 〉 = −R⊥(X,Y, ξ, η) (2.10)

for any X,Y, Z1, Z2 ∈ Γ (TM) and ξ, η ∈ Γ (TM⊥), where the covariant
derivative of II is defined via the Leibniz rule:

∇⊥XII(Y,Z) = X(II(Y, Z))− II(∇XY,Z)− II(Y,∇XZ).
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A sketched proof of the above theorem is given in Appendix A.1, which
is analogous to the derivation in do Carmo [26, §6] for the Riemannian case.
The three equations (2.8), (2.9), and (2.10) are named after Gauss, Codazzi,
and Ricci, respectively, which form the GCR system.

Three remarks on the GCR system are in order:

(i) The GCR system is a first-order nonlinear PDE system on the semi-
Riemannian manifold (M, g), with given g (hence ∇ and R) and unknowns
(II,∇⊥). The nonlinear terms in this system are of forms II⊗ II, II⊗∇⊥,
or ∇⊥ ⊗∇⊥, which are of quadratic nonlinearity.

(ii) The GCR system in Theorem 2.1 takes the same form as in the Riemannian
case; see [12,26,55]. Such coincidence, nevertheless, is merely formal. The
GCR system for semi-Riemannian manifolds includes the information of
non-trivial signatures, which leads to further analytical difficulties.

(iii) The GCR system can be generalized to any vector bundle E in place of
TM⊥. Indeed, since the Riemann curvature is defined for any bundle E
(i.e., RE), for any symmetric tensor II : Γ (TM) × Γ (TM) → Γ (E) and
S : Γ (E)× Γ (TM)→ Γ (TM) given by

〈SαX,Y 〉 = 〈II(X,Y ), α〉 for X,Y ∈ Γ (TM) and α ∈ Γ (E),

the GCR system in Theorem 2.1 is still well-defined for X,Y, Z1, Z2 ∈
Γ (TM) and ξ, η ∈ Γ (E), wherein we replace R⊥ by RE in Eq. (2.10).
Such equations are called the GCR system on bundle E.
Suppose that the trivial bundle of the ambient semi-Euclidean space TRn+k
admits an orthogonal splitting TM ⊕ E as the Whitney sum of vector
bundles. Then it is clear that the GCR system on bundle E is necessary for
the splitting. Conversely, we will prove in Theorem 5.1 that, for an abstract
vector bundle E over M , the GCR system on E is also a sufficient condition
for the local existence of such a splitting. Moreover, the splitting holds
globally if M is simply-connected, under suitable regularity assumptions.

2.3 Cartan Structural System

Now we introduce the Cartan structural system for the semi-Riemannian
submanifolds, first appeared in the formalism of exterior differential calculus
due to E. Cartan (cf. [20]). This can be viewed as an equivalent form of the
Gauss–Codazzi–Ricci system, which is more suitable for the weak continuity
and realizability considerations in the subsequent sections.

Cartan’s formalism (a.k.a. the method of moving frames) is a classical
tool in differential geometry; see [15,55,57]. In particular, it plays a crucial
role in the establishment of the realization theorem for Riemannian submani-
folds by Tenenblat [61], as well as the existence and uniqueness of immersions
of smooth manifolds into affine homogeneous spaces by Eschenburg–Tribuzy
[27]. In this paper, we develop Cartan’s formalism for the semi-Riemannian
submanifolds. It serves as the foundation for the Cartan structural system.
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To set up Cartan’s formalism, we need to introduce the frame field on
TM and its co-frame field on T ∗M , as well as the field of connection 1-forms.
The following convention is adopted:

Convention 2.7 From now on, the superscripts and subscripts obey the fol-
lowing rule:

1 ≤ i, j, k, l, s, t ≤ n; n+ 1 ≤ α, β, γ ≤ n+ k; 1 ≤ a, b, c, e ≤ n+ k.

Now, let {∂1, . . . , ∂n} ⊂ Γ (TM) be a frame field for M ; that is, at each
point P on M , {∂i|P }n1 forms an orthonormal basis for the tangent space TPM .
The orthonormality means

〈∂i, ∂j〉 = δijε
i for all i, j ∈ {1, . . . , n}

in the semi-Riemannian settings. We write {θ1, . . . , θn} ⊂ Γ (T ∗M) for the
co-frame field:

θi(∂j) = δij .

Similarly, we can also take {∂n+1, . . . , ∂n+k} ⊂ Γ (E) to be a frame field for E,
i.e., orthonormal with respect to the bundle metric gE , and {θn+1, . . . , θn+k} ⊂
Γ (E∗) to be its co-frame field.

In light of Convention 2.7, we define the connection 1-forms:

Definition 2.8 Let (M, g) be a semi-Riemannian manifold, and let E be a
vector bundle over M with bundle metric gE . The connection 1-form W is a
1-form-valued (n+ k)× (n+ k) matrix field:

W = {ωab } ∈ Γ (gl(n+ k;R)⊗ T ∗M),

defined component-wise as
ωij(∂l) := θj(∇∂l∂i) = εj〈∇∂l∂i, ∂j〉,
ωiα(∂j) := θα(II(∂i, ∂j)) = εα〈II(∂i, ∂j), ∂α〉,
ωαβ (∂i) := θβ(∇E∂i∂α) = εβ〈∇E∂i∂α, ∂β〉,
ωαi := −εiεαωiα.

(2.11)

Remark 2.1 We identify

Γ (gl(n+ k;R)⊗ T ∗M) ∼= Γ (gl(TM ⊕ E)⊗ T ∗M) =: Ω1(gl(n+ k;R)).

The right-most expression means the space of gl(n + k;R)-valued differential
1-forms. In general, for a Lie algebra g, the space of differential k-forms with
entries in g is written as

Ωk(g) := Γ (∧kT ∗M ⊗ g). (2.12)

This notation is needed for subsequent development.
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Now we introduce the two Cartan structural systems for semi-Riemannian
manifolds, the second of which is equivalent to the GCR system introduced in
§2.2. This seems to be known in the semi-Riemannian geometry community;
nevertheless, we have not been able to locate a proof in the literature, so it is
needed to present a detailed proof for completeness in Appendix A.3.

Proposition 2.1 The GCR system (2.8)–(2.10) is equivalent to the following
system for the connection 1-form (known as the second structural system):

dW =W ∧W. (2.13)

Its proof relies on a key lemma (see Appendix A.2), which says that W
is a “semi-skew-symmetric” matrix:

Lemma 2.1 W = {ωab } ∈ Ω1(o(ν + τ ; (n+ k)− (ν + τ))).

For subsequent developments, we note that W can be schematically
represented in the block-matrix form:

{ωba}1≤a,b≤k+n =

ñ
ωij ω

α
i

ωiα ω
β
α

ô
=

ñ
θj(∇•∂i) S∂α∂i

−S∂α∂i θβ(∇E• ∂α)

ô
. (2.14)

Remark 2.2 System (2.13) is understood as an equality on Ω2(g). On the
left-hand side, the exterior differential d is viewed as acting only on the T ∗M
factor if W ∈ Ω1(g), where g = gl(n+ k;R) in Eq. (2.12). Then dW ∈ Ω2(g)
and is given by

dW(U, V ) := U(W(V ))− V (W(U)) +W([U, V ]) for all U, V ∈ Γ (TM).

On the right-hand side, the wedge product on Ω1(g) is taken by combining
the wedge product on the T ∗M factor and the matrix multiplication on the g
factor in Eq. (2.12). That is,

(W ∧W)(U, V ) :=W(U) · W(V )−W(V ) · W(U) for all U, V ∈ Γ (TM).

So far, we have established the equivalence between the GCR system
and system (2.13). It is known as the second structural system. In fact, the
first structural system consists of the following identities on Ω1(gl(n;R)):

dθ = θ ∧W. (2.15)

This is equivalent to the torsion-free property of connection∇. As this property
is independent of metrics (regardless of Riemannian or semi-Riemannian), it
does not provide additional information to the isometric immersions. The proof
is standard and is sketched in Appendix A.4.

In the rest of the paper, we always refer to the second structural system
(2.13) as the Cartan structural system. In §4, we establish its global weak
continuity.
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3 Weak Continuity of Quadratic Functions on Semi-Riemannian
Manifolds

In order to establish the weak continuity of the Cartan structural system
on semi-Riemannian manifolds with lower regularity, we need to pass to the
weak limit of the quadratic nonlinear termW∧W, whereW is the connection
1-form in Proposition 2.1. We establish a geometrically intrinsic compensated
compactness theorem on vector bundles over the semi-Riemannian manifold
and apply it to develop a geometric, global approach to our problem. This is
the main goal of this section.

Our generalized quadratic theorem concerns the weakly convergent L2

sections of a vector bundle E over a semi-Riemannian manifold M . Its pro-
totype is the quadratic theorem à la Tartar [59] on the Euclidean space Rn.
In order to formulate it globally and intrinsically, two difficulties immediately
arise:

(i) Being endowed with a semi-Riemannian metric, M is a real manifold. How-
ever, our proof is based on Fourier analysis below involving factor i =

√
−1,

which has to be carried out over C.

(ii) The Fourier transform cannot be defined globally on a generic semi-Riemannian
manifold. For u ∈ L2(M ;E), one way we can do is to define

û(x, ξ) :=

∫
M

u(y)e−2πi〈exp
−1
x (y),ξ〉 dVg(y) for x ∈M, ξ ∈ T ∗xM,

where expx : TxM → M is the exponential map on the manifold, 〈·, ·〉 is
the paring of TM and T ∗M given by metric g, and dVg is the volume form
of g. However, it is only well-defined at x ∈ M up to the first conjugate
point of x, for which exp−1x can be specified unambiguously.

The above considerations call for a quadratic theorem on real manifolds,
for which the differential constraints are formulated globally and intrinsically.
For this purpose, we introduce three new ingredients:

– The (principal) symbol of a differential operator,

– A quadratic polynomial defined globally on vector bundles,

– Complexifications of vector bundles and quadratic polynomials.

The rest of this section is organized as follows: We first present the
definitions and basic properties of the principal symbol, quadratic polyno-
mials, and the Sobolev norms of sections over semi-Riemannian manifolds.
Then our generalized quadratic theorem is first stated and proved over a semi-
Riemannian manifold with a C∞ metric (cf. Theorem 3.1) and is then extended
over a semi-Riemannian manifold with a non-degenerate L∞ metric (cf. Theo-
rem 3.2). From now on, let M be a semi-Riemannian manifold, and let E and
F be two real vector bundles over M .

Principal Symbols. We collect only some basic facts here, and refer to [1]
for the details.
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Denote T ∈ Diffm(M ;E,F ) as an arbitrary differential operator T of
order m that maps E-sections to F -sections:

T : Γ (E)→ Γ (F ).

It is a crucial observation in micro-local analysis that σm(T ), the principal
symbol of T , can be defined intrinsically. Indeed, for any ξ ∈ T ∗xM , we may
choose a function f ∈ C∞(M) such that dxf = ξ, and then set

σm(T )(x, ξ) := lim
t→∞

[e−2πitf ◦ T ◦ e2πitf ](x)

tm
. (3.1)

It is easy to check that σm(T )(x, ξ) ∈ Hom(Ex, Fx) for any given ξ and that
the definition is independent of the choice of f . Here and hereafter, Ex ∼= RJ
and Fx ∼= RI denote the fiber of E and F at point x ∈ M , respectively, and
Hom(Ex, Fx) denotes the space of vector space homomorphisms from Ex to
Fx. Moreover, σm is a homogeneous polynomial of order m on each fiber of
T ∗M :

σm(T )(x, λξ) = |λ|mσm(T )(x, ξ) for all x ∈M, ξ ∈ T ∗xM , λ ∈ C.

More abstractly, denoting Pl(V,W ) as the vector space of l-degree ho-
mogeneous polynomials between the vector bundles V and W , the principal
symbol map σm defines the following vector space homomorphism:

σm : Diffm(M ;E,F )→ Pm(T ∗M ; Hom(E;FC)),

where FC := F⊗RC is the complexified vector bundle, which is necessary since
i =
√
−1 appears in the definition of σm in Eq. (3.1). We adopt this abstract

language in order to emphasize the global, intrinsic nature of the principal
symbol.

For the application in §5, we now discuss the following example: The
exterior differential operator T = d : ∧qT ∗M → ∧q+1T ∗M . In fact, we have

d ∈ Diff1(M ; ∧qT ∗M,∧q+1T ∗M),

whose the principal symbol σ1(d) is given by

[σ1(d)(ξ)](ω) = −2πiξ ∧ ω for ξ ∈ T ∗M and ω ∈ ∧qT ∗M.

Owing to the presence of i =
√
−1, we view the exterior algebra in the range of

d as being complexified: For each ξ ∈ T ∗M , σ1(d)(ξ) ∈ P1(∧qT ∗M ; ∧q+1T ∗M⊗
C). In this case, notice that σ1(d)(ξ) = −2πiξ∧, which is indeed a 1-homogeneous
polynomial of operators from q-tensors to complexified (q + 1)-tensors.

Intrinsic Formulation of Quadratic Polynomials. Now we define a quadratic
polynomial on a vector bundle E:
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Definition 3.1 Let E be a vector bundle over a real manifold M . A map
Q : Γ (E)→ C is a quadratic polynomial on E if it factors as

Q : Γ (E)
j−→ Γ (E ⊗ E)

q−→ C,

where j(s) = (s, s) is the natural inclusion of the diagonal, and q ∈ Γ (Hom(E⊗
E;C)) is conjugate 1-homogeneous in each argument:

q(λs1, s2) = λq(s1, s2), q(s1, µs2) = µq(s1, s2)

for all s1, s2 ∈ Γ (E) and λ, µ ∈ C. In this case, we write Q ∈ P2(E;C).

Such constructions remain valid for C replaced by R, in which Q is said
to be a real quadratic polynomial on E. It follows from the definition that any
quadratic polynomial Q is 2-homogeneous:

Q(λs) = |λ|2Q(s) for all s ∈ Γ (E) and λ ∈ C.

Moreover, suppose that U ⊂ M is a trivialized chart for the vector
bundle E of degree J , i.e., there exists a diffeomorphism:

Φ : E ⊃ π−1(U)
∼−→ U × CJ .

Then, for s = Φ−1(x, z) ∈ U × CJ with (x, z) ∈ U × CJ , the value of the
quadratic polynomial Q at s is given by

Q(s) =

J∑
j,k=1

Qjk(x)zjzk with Qjk ∈ C∞(U), (3.2)

so that the local representation of Q is obtained.

Sobolev Norms over Semi-Riemannian Manifolds. Now let us explain
the construction of Sobolev norms (of sections of vector bundles) over semi-
Riemannian manifolds.

Let (M, g) be a semi-Riemannian manifold. As we are concerned only
with the local Sobolev spaces over M in this paper (see Theorems 3.1, 4.1,
and 5.2), without loss of generality, we may assume M to be compact. Let
U := {Uj}Jj=1 be an atlas of coordinate charts on M . Given an arbitrary
(r, s)-tensor field T on (M, g), by restricting to each chart in U, one may
express it in local coordinates by Ti1,...,ir

j1,...,js
. More precisely, let { ∂

∂xi }
n
i=1 be an

local orthonormal basis for g, i.e., g( ∂
∂xi ,

∂
∂xj ) = εjδij (no summation) with

ε = (ε1, . . . , εn) as the signature of g, and let {dxi} be the co-frame dual to
{ ∂
∂xi } via g. Then

Ti1,...,ir
j1,...,js

:= T
( ∂

∂xj1
⊗ . . .⊗ ∂

∂xjs
⊗ dxi1 ⊗ . . .⊗ dxir

)
.

The inner product of two (r, s)-tensor fields T and S on (M, g) is given by

〈T,S〉g := Ti1,...,ir
j1,...,js

Sa1,...,arb1,...,bs
gi1,a1 · · · gir,argj1,b1 · · · gjs,bs , (3.3)
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where T = {Ti1,...,ir
j1,...,js

} and S = {Sa1,...,arb1,...,bs
} in the local coordinates of U. Then

we set
|T|g :=

»
|〈T,T〉g| .

Note that Eq. (3.3) can be readily interpreted as an L1
loc function when g is

invertible a.e., gij lies in L∞ for each i, j, and Ti1,...,ir
j1,...,js

and Sa1,...,arb1,...,bs
lie in Lp,

p ≥ 2, for all possible indices i1, . . . , ir, j1, . . . , js, a1, . . . , ar, and b1, . . . , bs.
Now, take a scalar function f : (M, g)→R. Similar to the Riemannian

case (cf. Chapter 2 in Hebey [35]), we define its W k,p norm, k = 0, 1, 2, . . ., by

‖f‖Wk,p(M,g) :=


∑k
m=0

{∫
M

(
|∇mf |g

)p
dVg

} 1
p

for p ∈ [1,∞),∑k
m=0 ess supM |∇mf |g for p =∞.

(3.4)

In the above, ∇m :=

m times︷ ︸︸ ︷
∇ ◦ . . . ◦ ∇ denotes the iterated covariant derivatives,

and the semi-Riemannian volume form is

dVg :=
»
|det g|dLn (3.5)

on each local chart of U, with the Lebesgue measure Ln. The integration of
a scalar function on M with respect to dVg is defined in the standard way,
by using an arbitrary partition of unity subordinate to U. The Sobolev space
W k,p(M, g) is the completion of C∞(M) under the norm in Eq. (3.4). For
k < 0 and p ∈ [1,∞], W k,p(M, g) is defined as the dual space of W−k,p

′
(M, g),

where 1
p + 1

p′ = 1.

A tensor field T on (M, g) is said to have W k,p–regularity if and only
if Ti1,...,ir

j1,...,js
∈ W k,p(M, g) for all indices i1, . . . , ir, and j1, . . . , js. Similarly,

a connection on TM is W k,p if and only if its Christoffel symbols Γαβγ ∈
W k,p(M, g) for all α, β, and γ. Given a vector bundle E over (M, g) equipped
with the bundle metric gE , we write W k,p(M, g;E, gE) for the space of E-
sections with W k,p regularity, defined in an analogous manner as for tensor
fields by considering trivialized charts for E.

We remark that the above definition of the W k,p–norms may depend on
the atlas U and the trivialization of bundle E. Nonetheless, all these norms are
equivalent modulo constants depending only on the differentiable structure of
M . Thus, the corresponding Sobolev spaces are identical vector spaces with
equivalent topologies; in particular, they are independent of local coordinates.

From now on, we assume that the semi-Riemannian metric g lies in L∞loc,
with the non-degeneracy condition (see §2.1) understood in the a.e. sense. This
is a very natural and mild condition, which suggests that M as a metric space
does not contain interior infinity points. As a consequence, det g and g−1 (e.g.,
obtained from the Cramer’s rule) are also in L∞loc, and hence dVg defined in
Eq. (3.5) is an L∞loc differential n-form.

With the preceding preparations, we now state our geometric quadratic
theorem on vector bundles over a semi-Riemannian manifold, first with a C∞

metric g.
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Theorem 3.1 Let M be a semi-Riemannian manifold with a C∞ metric g.
Let E and F be two real C∞ vector bundles over M . Consider a family of
E-sections {uε} ⊂ L2

loc(M ;E), a differential operator T ∈ Diffm(M ;E,F ) for
some m ∈ R+ with the principal symbol σm(T ) : T ∗M → Hom(E;FC), and a
quadratic polynomial Q : Γ (E)→ R. If the following conditions hold:

(C1) uε ⇀ u weakly in L2
loc(M ;E),

(C2) {T uε} is pre-compact in H−mloc (M ;F ),
(C3) Q ◦ s = 0 for all s ∈ ΛT , where the cone of T is defined by

ΛT :=
{
s ∈ Γ (E) : σm(T )(ξ)(s) = 0 for some ξ ∈ T ∗M \ {0}

}
,

then, for any ψ ∈ C∞c (M),

lim
ε→0

∫
M

(Q ◦ uε)(x)ψ(x) dVg(x) =

∫
M

(Q ◦ u)(x)ψ(x) dVg(x).

Before presenting the proof, we make several remarks on Theorem 3.1:

(i) Theorem 3.1 is formulated globally and intrinsically on the semi-Riemannian
manifold M , since symbol σm, cone ΛT , and the Sobolev spaces H• of sec-
tions are all defined without referring to local coordinates. In addition, σm
is defined only by using the differentiable structure of M , without resort
to the Riemannian or semi-Riemannian structure. Therefore, cone ΛT in
(C3) depends only on the algebraic properties of T .

(ii) In Theorem 3.1, we denote the target space of symbol σm(T ) by Hom(E;FC),
which is understood as the vector bundle of R-bundle homomorphisms from
E to the complexification of F , i.e., FC := F ⊗ C. It is also common to
write it as

σm(T ) ∈ Γ (TM ⊗Hom(E;FC)).

(iii) The following lemma concerns the naturality of the principal symbol under
the action of diffeomorphism group. It is crucial for the proof of Theorem
3.1.

Lemma 3.1 Let O and Õ be open subsets of Rn, and let F : O → Õ be
a diffeomorphism. Then F∗P ∈ Diffm(Õ) for P ∈ Diffm(O). Moreover, the
principal symbols of P and F∗P , i.e., σm(F∗P ) and σm(P ), are related as

σm(F∗P )(F (x), ξ) = σm(P )(x, [dxF ]>(ξ)) for each x ∈ O and ξ ∈ T ∗Rn,

where F∗P denotes the pushforward of P under F :

(F∗P )(ϕ) = P (ϕ ◦ F ) ◦ F−1 for all ϕ ∈ C∞c (Õ).

This is a special case of Theorem 20 in [1]. In full generality, the first
assertion holds for general pseudo-differential operators, and the second asser-
tion holds for pseudo-differential operators with classical total symbols.

The strategy for the proof of Theorem 3.1 is as follows: First of all,
using a partition-of-unity, together with the commutator estimate of T ∈
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Diffm(M ;E,F ) and a multiplication operator, we reduce the theorem to a
local problem on one single chart of the manifold. Next, thanks to Lemma
3.1, we can flatten the local chart to Rn; this cannot be done directly, owing
to the non-trivial semi-Riemannian metrics on the manifold and the bundles.
Nevertheless, in view of the quadratic structure of Q, the signature of the
semi-Riemannian metrics does not affect the proof. Therefore, locally we can
regard the metrics as “close” to the Euclidean metrics, and then modify the
arguments by Tartar [59] to complete the proof.

Proof of Theorem 3.1. The proof is divided into eight steps.

1. We first justify the following two reductions:

(i) It suffices to prove the theorem for u = 0. Indeed, we note that

Q(uε − u) = Q(uε) +Q(u)− 2

J∑
i,j=1

Qiju
i
εu
j

for Q is a real quadratic polynomial. Condition (C1) yields

J∑
i,j=1

Qiju
i
εu
j ⇀ Q(u) weakly in L2

loc.

Thus, Q(uε − u) and Q(uε) − Q(u) have the same distributional limit as
ε→0.

(ii) We can localize the statement to each chart of the differentiable manifold
M . To fix the notations, let {Uk}k∈I be an atlas of the differentiable man-
ifold M . We claim that it suffices to prove Theorem 3.1 for sequence {uε}
supported on one single Uk.

For this purpose, take any ψ ∈ C∞c (M) and consider the following
identity:

T (ψuε) = ψT uε + [T , ψ]uε,

where [T , ψ] denotes the commutator of T and the operator of multiplication
by ψ.

Clearly, [T , ψ] is a differential operator of order not exceeding m − 1.
Since {uε} is pre-compact (hence uniformly bounded) in L2

loc, {[T , ψ]uε} is
uniformly bounded in H−m+1

loc , which is compactly embedded in H−mloc by the
Rellich lemma. Moreover, by condition (C2), {ψT uε} is also pre-compact in
H−mloc . Thus, the same holds for {T (ψuε)}. In addition, the transition function
ϕk,l between any two overlapping charts Uk and U l is a diffeomorphism, so
that both T |Uk and T |U l have the principal symbols of order m, which are m-
homogeneous polynomials in the fiber of the cotangent bundle T ∗M . Indeed,
they differ only by a multiplicative factor controlled by the Lipschitz norm of
ϕk,l, which is bounded uniformly on M for all k, l ∈ I. Up to now, we have
justified that the assumptions of the theorem are invariant under operation
uε 7→ ψuε, where ψ ∈ C∞c (M) is an arbitrary test function.
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It remains to establish the local-to-global result: If the assertion holds
for {uε} supported in each chart, then it also holds for arbitrary {uε}. To this
end, let {φk}k∈I be a partition-of-unity subordinate to atlas {Uk}k∈I , i.e., 0 ≤
φk ≤ 1, φk ∈ C∞c (Uk) for each k ∈ I, and

∑
k∈I φ

k = 1 on M . Then we can

find ψk ∈ C∞c (Uk) with 0 ≤ ψk ≤ 1 such that φk = (ψk)2 for each k ∈ I. To
proceed, suppose that Theorem 3.1 is proved for sequence {ψkuε} ⊂ L2(Uk;E)
for each k ∈ I, with ψkuε ⇀ ψku in L2(Uk;E) along some subsequence
{ψkuεi}i∈I1⊂I . Then, for a neighboring chart U l, i.e., Uk ∩ U l 6= ∅, we can
select a further subsequence {ψluεj}j∈I2 ⊂ {ψkuεi}i∈I1 such that I2 ⊂ I1,
and {ψluεj} converges weakly in L2(U l;E) to some ψlũ. However, due to the
uniqueness of subsequential weak limits, we have

u = ũ on Uk ∩ U l.

Hence, we can write ψlũ as ψlu without ambiguity, according to the interpre-
tation: the limit function u, previously defined only on Uk, is now extended
to domain Uk ∪ U l.

Now, since M is second-countable (which is a part of the definition of
differentiable manifolds), we can take the index set I for the atlas to be at
most countable. Thus, performing a diagonalization process to the arguments
in the preceding paragraph, we obtain a subsequence (still denoted) {uε} and
a function u ∈ L2

loc(M ;E) defined on manifold M such that

ψkuε ⇀ ψku for each k ∈ I.

Therefore, for any test function ψ ∈ C∞c (M), we can pass to the limit as
follows:

lim
ε→0

∫
M

(Q ◦ uε)(x)ψ(x) dVg(x) =
∑
k∈I

lim
ε→0

∫
M

(ψk)2(x) (Q ◦ uε)(x)ψ(x) dVg(x)

=
∑
k∈I

lim
ε→0

∫
M

Q(ψk(x)uε(x))ψ(x) dVg(x)

=
∑
k∈I

∫
M

Q(ψk(x)u(x))ψ(x) dVg(x)

=
∑
k∈I

∫
M

(ψk)2(x) (Q ◦ u)(x)ψ(x) dVg(x)

=

∫
M

(Q ◦ u)(x)ψ(x) dVg(x). (3.6)

In the first and the last lines of (3.6), we have used that
∑
k∈I(ψk)2 = 1 on M ,

while in the second and the fourth lines, we have used the quadratic structure
of Q. Moreover, the order of summation over α ∈ I can be interchanged with
the limit and the integration, because the partition-of-unity is locally finite.
Then the localization argument is completed by using Eq. (3.6).

2. From now on, {uε} is assumed to be supported on a single chart Uk ⊂M .
In this step, we flatten the chart by transforming Uk to Rn via the coordinate
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map. First, without loss of generality, we assume that the vector bundles E and
F are trivialized on Uk; otherwise, a refinement of atlas {Uk}k∈I can be made
if necessary. Now, by the basic manifold theory, there exists a diffeomorphism
F k : Uk

∼−→ Rn so that

F k∗ T ∈ Diffm(Rn; Rn × RJ ,Rn × RI).

Here and hereafter, we assume that E and F have typical fibers RJ and RI ,
respectively.

Moreover, Lemma 3.1 implies

σm(F k∗ T )(F k(x), ζ) = σm(T )(x, [dxF
k]>(ζ)) for all x ∈ Uk and ζ ∈ RJ .

(3.7)
Notice that ζ and [dxF

k]>(ζ) are simultaneously non-vanishing in Eq. (3.7),
since F k is a diffeomorphism. We conclude

ΛT = ΛFk∗ T ,

i.e., the cones of T and F k∗ T coincide.
Therefore, it suffices to prove the theorem with {dF k(ψkuε)} and F k∗ T

in place of {uε} and T , respectively, where {ψk : k ∈ I} is a partition-of-unity
subordinate to atlas {Uk : k ∈ I} as in Step 1. In addition, by the paracom-
pactness of topological manifolds, we may assume ψk to be supported in a
compact subset of Uk for each k ∈ I. Thus, in the sequel, we take dF k(ψkuε)
to be compactly supported in Rn and identify it with the map on the whole
of Rn, obtained via the extension-by-zero. To simplify the notations, we still
label {dF k(ψkuε)} as {uε}. Thus, we reduce to the case: M = Rn.

3. Thanks to the localization and flattening arguments in Steps 1–2, from now
on, we assume {uε} ⊂ L2

c(Rn,Rn×RJ) and T ∈ Diffm(Rn,Rn×RJ ;Rn×RI).
To simplify the notations, we still write E = Rn × RJ and F = Rn × RI , and
denote the metric on Rn by g with an abuse of notations, i.e., assuming that
M = Rn, and the bundles E and F are globally trivialized.

To begin with, recall that the Lp norm of u : Rn → E is defined as

‖u‖Lp(Rn;E) :=
(∫

Rn
|u|2gE dVg

) 1
p

=
(∫

Rn

{ J∑
j=1

J∑
k=1

εkgEjk(x)uj(x)uk(x)
} p

2
»
|det g(x)|dx

) 1
p

,

where gE is the bundle metric on E, indices 1 ≤ j, k ≤ J are for the fiber
of E, and εk ∈ {±1} is the signature of the k-th component of gE such that
(hjk) := (εkgEjk) becomes positive definite. Here and in the sequel, we choose

a coordinate system in which gE is diagonalized:

gE = diag(λ1, . . . , λτ ;λτ+1, . . . , λJ),
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where λj < 0 for 1 ≤ j ≤ τ , and λj > 0 for τ + 1 ≤ j ≤ J . Correspondingly,
ε1 = · · · = ετ = −1 and ετ+1 = · · · = εJ = 1, where τ is the index of g.

Now, define a new sequence of sections {vε} ⊂ L2(Rn;E) by compo-
nents:

vjε :=
√
εjλj |det g|

1
4ujε for each j = 1, 2, . . . , J. (3.8)

That is, we write vε = (v1ε , . . . , v
J
ε )>. By this definition, vε depends on gE , g,

and uε, and the following identity holds:

‖vε‖2L2(Rn, g0;E) ≡
J∑
j=1

∫
Rn
{vjε(x)}2 dx = ‖uε‖2L2(Rn, g;E) for each ε, (3.9)

where g0 denotes the Euclidean metric on Rn. Thus, by condition (C1), {vε}
is uniformly bounded in L2 with respect to g0. Moreover, supp(vε) ⊂ supp(uε)
for each ε so that all the terms of {vε} are supported on a common compact
set. By the Riemann-Lebesgue lemma, there are finite numbers K,K ′ > 0 such
that ‖v̂ε‖L∞(BK) ≤ K ′, where BK is the Euclidean ball {ξ ∈ Rn : |ξ| < K}.
Thanks to the Parseval identity, the Cauchy–Schwarz inequality, and (C1), we
now have

lim
ε→0

∫
|ξ|≤K

|v̂ε(ξ)|2 dξ ≤ K ′ lim
ε→0

∫
Rn
v̂εsgn(v̂ε)χBK dξ

≤ K ′
√
Kn lim

ε→0
‖v̂ε‖L2(Rn,g0;E) = 0, (3.10)

where sgn(z) := z
|z| for z 6= 0, the choice of K ′ is immaterial, and K will be

further specified later.
As a remark, the norm on ξ is also taken with respect to the Euclidean

metric, since it is the metric induced by g0 on the cotangent bundle T ∗M .

4. Next we control the high-frequency region of {vε}. For j = 1, 2, . . . , J , define

χj = χj(g) := |det g| 14
√
εjλj ,

so that vjε = χjujε for each j. Notice that χj > 0 strictly, by the non-degeneracy

of metrics g and gE . Writing uε =
∑J
j=1 u

j
ε∂j and similarly for vε in local

coordinates, by the linearity of the differential operator T , we have

T vε = T
{ J∑
j=1

χjujε∂j

}

=

J∑
j=1

χj T (ujε∂j) +

J∑
j=1

[T , χj ]ujε∂j =: Iε + IIε.

In IIε, [T , χj ] is the commutator between T and the multiplication operator
by χj .

We now argue that {T vε} is pre-compact in H−m(Rn, g0;F ). First of
all, this sequence is compactly supported, by the construction of {vε} and the
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locality of the differential operator T . Thus, we neglect subscript “loc” for the
corresponding Sobolev spaces. By explicitly writing out g0 in the subscript, we
emphasize that M = Rn is equipped with the Euclidean metric. To this end,
we now prove that both {Iε} and {IIε} are pre-compact in H−m(Rn, g0;F ).

For Iε, we first compute:

‖Iε‖H−m(Rn,g0;F ) ≤ sup
1≤j≤J

‖χj − 1‖L∞(Rn) ‖Tuε‖H−m(Rn,g0;F )

≤
(
1 + ‖gE‖

1
2

L∞(E)‖ det g‖
1
4

L∞(M)

)
‖Tuε‖H−m(Rn,g0;F ).

(3.11)

Next, we show that the final term ‖Tuε‖H−m(Rn,g0;F ) can be related to
‖Tuε‖H−m(Rn,g;F ), whose pre-compactness is assumed by condition (C2). For
this purpose, it requires to invoke the Fourier characterization of the Sobolev
norms ‖ · ‖H−m(Rn,g0;F ) and ‖ · ‖H−m(Rn,g;F ). Since we have localized sequence

{uε} to a chart Uk of M , on which E and F are trivialized in Steps 1–2, g|Uk
has no self-intersecting geodesics, provided that Uk is contained in a geodesic
normal neighborhood. This can be assumed by shrinking Uk if necessary. Then
the pushforward metric F k∗ g — which is still labelled as g from Step 2 onward
— satisfies the same property on Rn = M , so that ‖ · ‖H−m(Rn,g;F ) can be
defined globally via the Fourier transform unambiguously.

In this way, we now obtain

‖T uε‖H−m(Rn,g0;F ) =

∫
Rn

|‘T uε(ξ)|2gF
(1 + |ξ|2)m/2

dξ

=

∫
Rn

|‘T uε(ξ)|2gF
(1 + |ξ|2g)m/2

»
|det g|

ß
(1 + |ξ|2g)m/2

(1 + |ξ|2)m/2
1√
|det g|

™
dξ

≤ C
∫
Rn

|‘T uε(ξ)|2gF
(1 + |ξ|2g)m/2

»
|det g|dξ

=: C‖T uε‖H−m(Rn,g;F ), (3.12)

where C depends only on m, ‖g‖L∞(M), and infM |det g|. Together with Eq.
(3.11), we have

‖Iε‖H−m(Rn,g0;F ) ≤ C̃‖T uε‖H−m(Rn,g;F ),

where C̃ depends only on g, gE , and m, but independent of ε. In view of (C2),
{Iε} is pre-compact in H−m(Rn, g0;F ).

We now turn to {IIε}: Since T ∈ Diffm(M ;E,F ) and χj is a multipli-
cation operator, [T , χj ] ∈ Diffr(M ;E,F ) for r ≤ m− 1. By assumption (C1),
{uε} is bounded in L2(M, g;E), hence {IIε} is pre-compact in H−m(Rn, g;F )
due to the Rellich lemma. Again, by the estimates in Eq. (3.12), {IIε} is also
pre-compact in H−m(Rn, g0;F ).

Therefore, {T vε} is pre-compact in H−m(Rn, g0;F ) so that

T vε −→ 0 strongly in H−m(Rn, g0;F ). (3.13)
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This is because uε ⇀ 0 in L2 (see Step 1 above). Here Rn is endowed with the
Euclidean metric g0, and F has the bundle metric gF .

5. Now we estimate the Euclidean L2 norm of ‘T vε on {|ξ| ≥ 1}, where ‘T vε is
the standard Fourier transform on Euclidean spaces:‘T vε(ξ) :=

∫
Rn
T vε(x)e−2πiξ·x dx.

Indeed, since T ∈ Diffm(M ;E,F ), by the localization and flattening in Steps
1–2, we have

T =
∑
|α|≤m

aα(x)∂αx ,

and the principal symbol is given by

σm(T )(x, ξ) = (−2πi)m
∑
|α|=m

aα(x)ξα;

see §3 in [1]. Combining with the lower order terms, we have‘T vε(ξ) = (−2πi)m
∑
|α|=m

aα(x)ξαv̂ε(ξ) +
∑

|β|≤m−1

bβ(x, ξ)ξβ v̂ε(ξ),

where |aα(x)| + |bβ(x, ξ)| ≤ C0 for all x ∈ M and ξ ∈ T ∗xM , and for each α
and β. Then

‖T vε‖2H−m({|ξ|≥K})

:=

∫
|ξ|≥K

∣∣(−2πi)m
∑
|α|=m aα(x)ξαv̂ε(ξ) +

∑
|β|≤m−1 bβ(x, ξ)ξβ v̂ε(ξ)

∣∣2
(1 + |ξ|2)m

dξ

≥ C−11

∑
|α|=m

∫
|ξ|≥K

|aα(x)|2|ξ|2m

(1 + |ξ|2)m
|v̂ε(ξ)|2 dξ

− C2

∑
|γ|≤2m−1

∫
|ξ|≥K

|ξ|γ

(1 + |ξ|2)m
|v̂ε(ξ)|2 dξ,

where C1 depends only on m, while C2 = C2(supx |bβ(x)|,m). This is obtained
by expanding the quadratic in the second line above and separating the highest
order term from the other terms. Now, choosing K ≥ 1 so large that the second
term is majorized by the first term in the last line, we have

‖T vε‖2H−m({|ξ|≥K}) ≥ C
−1
3

∑
|α|=m

∫
|ξ|≥K

|aα(x)|2|ξ|2m

(1 + |ξ|2)m
|v̂ε(ξ)|2 dξ,

which converges to 0 by Eq. (3.13), where C3 depends on C1, C2, and K.
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6. In this step, we complexify Q and ΛT . First, we view Q : Γ (E) → R as
a complex quadratic polynomial QC : Γ (EC) → C, given by the following
expression in local coordinates:

QC(z) := QC
x(z) :=

∑
j,k

Qjk(x)zjzk for x ∈M and z ∈ EC
x ,

where EC
x
∼= CJ is the fiber of the complexified bundle EC := E ⊗ C at point

x. Thus, QC(s) = Q(s) for real s ∈ Γ (E). Moreover, we define the complexified
cone by

ΛC
T := ΛT + iΛT = {sC = s+ is : s ∈ ΛT }.

We now compute QC(ζ) for ζ = s + ir, where s, r ∈ Γ (E) are real:
Indeed,

QC(s+ ir) = Q(s) +Q(r) + i
{
q(r, s) + q(s, r)

}
,

where q(r, s) :=
∑
j,kQjk(x)rjsk and Q(s) = q(s, s) as before. In particular,

we have
QC(sC) = 2Q(s) + 2iQ(s) = 2Q(s)C,

so that, for sC = s+ is ∈ ΛC
T , the following facts hold:

(i) Q(s) >,=, or < 0 if and only if Re{QC(sC)} >,=, or < 0 (respectively);

(ii) s ∈ ΛT if and only if sC ∈ ΛC
T ;

(iii) For any ψ ∈ C∞c (M) and (uε)
C := uε + iuε, we have

lim
ε→0

∫
M

(Q ◦ uε)ψ dVg = 0 ⇐⇒ lim
ε→0

∫
M

Re{QC ◦ (uε)
C}ψ dVg = 0.

7. We first observe the following pointwise inequality: For each δ > 0 and any
compact set K b T ∗M \ {0}, there is a constant Cδ,K ∈ (0,∞) such that

Re{QC(sC)} ≥ −δ
∣∣|sC|gE,C ∣∣2 − Cδ,K∣∣|σm(T )(η)(sC)|gF,C

∣∣2 (3.14)

for each η ∈ K and s ∈ Γ (E), provided that Re(Q) ≥ 0 on ΛT . Here gE,C

is the complexified bundle metric on E, obtained according to the same rule
for Q 7→ QC, by viewing gE as a quadratic form on each fiber (i.e., a vector
space) of E; and similarly for gF,C.

Indeed, since Eq. (3.14) is 2-homogeneous in sC, the scaling: sC 7→ λsC

by any λ ∈ C leaves it invariant. In particular, it is independent of the signa-
tures of the semi-Riemannian bundle metrics gE and gF . Moreover, cone ΛT
in (C3) is completely determined by T , which is independent of metrics g, gE ,
and gF , and sequences {uε} and {vε}. Thus, Eq. (3.14) follows from a simple
contradictory argument as in Tartar’s proof of the classical quadratic theorem
[59].

We now integrate Eq. (3.14) over {|ξ| ≥ K}, with K ≥ 1 specified at

the end of Step 5 above, sC = (v̂ε)
C, and η := ξ2m

(1+|ξ|2)m . Then

2−m =
|ξ|2m

(2|ξ|2)m
≤ |η| ≤ 1 for all |ξ| ≥ K.
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We remark here that it is crucial for sequence {vε} to be taken on M = Rn
with respect to the Euclidean metric (cf. Step 3 above). In this case, the metric
induced on the cotangent bundle T ∗M is also Euclidean, so that |ξ| 6= 0 for
all ξ ∈ T ∗M \ {0}.

To proceed, η ∈ K := {2−m ≤ |ξ| ≤ 1} is indeed a compact subset of
T ∗M \ {0} so that∫

|ξ|≥K
Re{QC(v̂ε)

C} dξ

≥ −δ‖vε‖2L2(RN ;E) − Cδ,K
ß ∑
|α|=m

∫
|ξ|≥K

|aα(x)|2|ξ|2m

(1 + |ξ|2)m
|v̂ε(ξ)|2 dξ

™
,

where the last term on the right-hand side tends to zero as ε→ 0 (cf. Step 5).
Therefore, we have

lim
ε→0

∫
|ξ|≥K

Re{QC(v̂ε)
C}dξ ≥ −C0δ for arbitrary δ > 0,

where C0 = supε>0 ‖vε‖2L2(Rn;E) = supε>0 ‖uε‖2L2(Rn, g;E) < ∞. This implies
that the left-hand side is non-negative. Applying the same argument for −Q
in place of Q, thanks to condition (C3) and Step 6 above, we finally obtain

lim
ε→0

∫
|ξ|≥K

Re {QC ◦ v̂εC}(ξ) dξ = 0,

that is,

lim
ε→0

∫
|ξ|≥K

Re {Q(v̂ε)}(ξ) dξ = 0. (3.15)

8. Now we combine (3.10) with (3.15) and employ the Plancherel formula to
conclude

lim
ε→0

∣∣∣ ∫
Rn

Re{Q(v̂ε(ξ))} dξ
∣∣∣

≤ lim
ε→0

∫
|ξ|<K

∣∣Re{Q(v̂ε(ξ))}
∣∣dξ + lim

ε→0

∣∣∣ ∫
|ξ|≥K

Re{Q(v̂ε(ξ))}dξ
∣∣∣

≤ C lim
ε→0

∫
|ξ|<K

|v̂ε(ξ)|2 dξ = 0, (3.16)

for some constant C > 0 independent of ε > 0. Then we infer from the
Plancherel formula that

lim
ε→0

∫
Rn

(Q ◦ vε)(x) dx = 0.

Also, recall from Equation (3.8) that vε differs from uε by a multiplicative
factor depending only on the L∞ norms of metrics on M and E (independent
of ε). As Q is quadratic, we thus deduce

lim
ε→0

∫
M

(Q ◦ uε)(x) dVg = 0.
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Moreover, we recall from Step 1 that the assertion of Theorem 3.1 is in-
variant under localizations, i.e., multiplication by test functions ψ ∈ C∞c (M).
Therefore, we can now conclude that {Q ◦ uε} converges to Q ◦ u in the sense
of distributions. This completes the proof.

We emphasize that the non-degeneracy condition of metric, det g 6= 0,
is crucial to the proof. We need it in Eq. (3.12) to compare the H−m norms
of T ûε taken with respect to g and the Euclidean metric g0. Therefore, we
can extend Theorem 3.1 to a more general theorem, Theorem 3.2 below, for
non-smooth metrics g, gE , and gF , which is crucial to the development in §4.
Notice that, in the proof of Theorem 3.1, only the L∞loc topology of the metrics
are involved in the estimates. Thus, in view of the Morrey–Sobolev embedding,
the following result holds by an approximation argument:

Theorem 3.2 Let M be a semi-Riemannian manifold with a non-degenerate
L∞loc metric g (i.e., |det g| ≥ η0 > 0 a.e.). Let E and F be two real vec-
tor bundles over M with L∞loc bundle metrics gE and gF , respectively. Con-
sider a sequence of E-sections {uε} ⊂ L2(M ;E), a differential operator T ∈
Diffm(M ;E,F ) for some m ∈ R+ with the principal symbol σm(T ) : T ∗M →
Hom(E;FC), and a real quadratic polynomial Q : Γ (E)→ R. If the following
conditions hold:

(C-1) uε ⇀ u weakly in L2
loc(M ;E),

(C-2) {T uε} is pre-compact in H−mloc (M ;F ),

(C-3) Q(s) = 0 for all s ∈ ΛT , where the cone of T is defined by

ΛT :=
{
s ∈ Γ (E) : σm(T )(ξ)(s) = 0 for some ξ ∈ T ∗M \ {0}

}
,

then

lim
ε→0

∫
M

(Q ◦ uε)ψ dVg =

∫
M

(Q ◦ u)ψ dVg for any ψ ∈ C∞c (M).

To conclude this section, besides the geometric theorem, Theorem 3.2,
we can also obtain a generalized compensated compactness theorem in the
abstract harmonic analysis settings. Although this result is not needed for
our weak continuity theorem (Theorem 4.1) for the Cartan structural system
below, it is of independent interest from the perspectives of compensated com-
pactness and harmonic analysis. In addition, it may help to elucidate certain
steps in the lengthy proof of Theorem 3.1 that leads to Theorem 3.2 above.

We first recall some basics of abstract harmonic analysis (cf. Loomis [42]
and the notes by Tao [60]). A topological group G is a group with a topology,
in which the group operation and the inverse are continuous. If a group G
is Abelian whose topology is Hausdorff and locally compact, we say that G
is a locally compact Abelian group, abbreviated as LCA group in the sequel.
For any LCA group G, there exists an invariant Radon measure µG, unique
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up to multiplicative constants, known as the Haar measure. The Lp norm,
1 ≤ p <∞, for a function u : G→ C can then be defined as

‖u‖Lp(G) :=
(∫

G

|u(g)|p dµG(g)
)1/p

.

Given any LCA group G, its group of characters, Ĝ := Hom(G;R/Z),
is also an LCA group endowed with the local-uniform topology of any non-
trivial Haar measure (which is the weakest topology making each element of
Ĝ continuous). It is also known as the dual of G, due to the Pontryagin duality

theorem: G is canonically isomorphic to
ˆ̂
G. Then, for u ∈ L1(G), we can define

its Fourier transform û : Ĝ→ C by

û(ξ) :=

∫
G

u(g)e−2πiξ(g) dµG(g), (3.17)

where ξ(g) is given by the duality pairing of Ĝ and G. From now on, we write
0 ∈ Ĝ as the group identity; this is in agreement with the definition, Ĝ :=
Hom(G;R/Z), which is the group of additive (not multiplicative) characters.

Next, the Plancherel formula extends to the general LCA groups:

‖u‖L2(G) = ‖û‖L2(Ĝ) for all u ∈ L2(G),

with the Haar measures µG and µĜ suitably normalized. In other words, the
Fourier transform defined in Eq. (3.17) is an isometry between L2(G) and
L2(Ĝ). Notice that all the constructions up to now can naturally be extended
to vector-valued functions u : G→ CI for I ≥ 1.

Finally, we say that T : L2(G)→ L2(G) is a multiplier operator if”T u(ξ) = m(ξ)û(ξ) for some m : Ĝ→ C,

where m is known as the Fourier multiplier of T . More generally, for T :
L2(G;CJ)→ L2(G;CI) for I, J ≥ 1, the multiplier is a mapping

m : Ĝ→ Mat(I × J ;C) ∼= (CJ)∗ ⊗ CI .

That is, for each ξ ∈ Ĝ, m(ξ) is a linear operator from CJ to CI (equivalently,
an I × J matrix). In the sequel, for any matrix M ∈ Mat(I × J ;C), we use

|M | :=
»∑I

i=1

∑J
j=1 |Mij |2 to denote its Hilbert–Schmidt norm.

In this context, we say that Q : CN → C is a quadratic polynomial if
it is a Hermitian 2-form on CN , i.e., Q = {Qjk} as a complex N ×N matrix
satisfies

Qjk = Qkj for each j, k = 1, 2, . . . , N.

That is,

Q(λ) =

N∑
j,k=1

Qjkλ
jλk for λ = (λ1, . . . , λN ) ∈ CN and constants Qjk ∈ C.

(3.18)
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Theorem 3.3 Let G be an LCA group with Haar measure µG. Consider a
sequence {uε} in L2

c(G;CJ), a Fourier multiplier operator T : L2(G;CJ) →
H−s(G;CI) with multiplier m : Ĝ → Mat(I × J ;C) for some s ∈ R+, and a
quadratic polynomial Q : CJ → C. Assume that

(i) uε ⇀ u weakly in L2(G;CJ).

(ii) The end of Ĝ retracts nicely onto a compact set. More precisely, for some
compact set Ξ b Ĝ containing 0, there exist another compact set K b
Ĝ\{0} and a continuous surjective map Φ : Ĝ\Ξ → K such that {(Φ∗m)ûε}
is pre-compact in L2(Ĝ \Ξ;CJ).

(iii) Q(λ) = 0 for all λ ∈ ΛT , where ΛT (the cone of T ) is defined by

ΛT :=
{
λ ∈ CJ : m(ξ)(λ) = 0 for some ξ ∈ Ĝ \ {0}

}
. (3.19)

Then

lim
ε→0

∫
G

(Q ◦ uε)(g) dµG(g) =

∫
G

(Q ◦ u)(g) dµG(g).

In Theorem 3.3 above, the pullback of m under Φ, i.e., Φ∗m : Ĝ \ Ξ →
[0,∞], is given by Φ∗m(ξ) := m(Φ(ξ)). In the definition of ΛT in (3.19), we
view m : Ĝ → (CJ)∗ ⊗ CI . That is, m(ξ) is an operator from CJ to CI so
that m(ξ)(λ) ∈ CI . According to this interpretation, another characterization
of the cone is

ΛT =
⋃

ξ∈Ĝ\{0}

ker[m(ξ)].

The proof of Theorem 3.3 can be found in Appendix B.

4 Global Weak Continuity of the Cartan Structural System

In this section, we establish the weak continuity of the Cartan structural
system (2.13) on semi-Riemannian manifolds. The arguments are global and
intrinsic, based on the geometric compensated compactness theorem, Theorem
3.2. This extends our earlier results on the weak continuity of the GCR system
on Riemannian manifolds [12,14].

Theorem 4.1 Let (M, g) be a semi-Riemannian manifold of dimension n,
with Ind(M) = ν, g ∈ L∞loc, and the Levi–Civita connection ∇ of g in Lploc for
p > 2. Assume that a family of connection 1-forms {Wε} with the same index
is uniformly bounded in Lploc and that each Wε satisfies the Cartan structural
system (2.13) in the sense of distributions. Then, after passing to a subsequence
if necessary, Wε converges weakly in Lploc to a connection 1-form W that also
satisfies system (2.13).

By “{Wε} with the same index” we mean that there are fixed positive
integers k and τ such that, for each ε,

Wε ∈ Lploc(M ; T ∗M ⊗ o(ν + τ, (n+ k)− (ν + τ))).
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That is, {Wε} arises from isometric immersions ofM into a fixed semi-Euclidean
space Rn+kν+τ .

Proof of Theorem 4.1. Our goal is to pass to the limit in the system:

dWε =Wε ∧Wε. (4.1)

We divide the proof into four steps. Throughout the proof, we write

h := o(ν + τ, (n+ k)− (ν + τ)).

1. Take an arbitrary test differential form ϕ ∈ C∞c (M ; ∧n−2T ∗M). Then

dWε ∧ ϕ =Wε ∧ (Wε ∧ ϕ) = ?〈?Wε,Wε ∧ ϕ〉, (4.2)

where ? : ∧jT ∗M → ∧n−jT ∗M is the Hodge star operator (a vector bundle
isomorphism), and ϕ has no h-component. In the rest of the proof, we also use
? to denote its natural extension ? : ∧jT ∗M ⊗ h → ∧n−jT ∗M ⊗ h, given by
?(ω ⊗ A) := ?ω ⊗ A for ω ∈ ∧jT ∗M and A ∈ h. In other words, we do not
distinguish between ? and ?⊗ idh.

2. We now determine the differential constraints of Eq. (4.2).
We start from the left-hand side. Notice that dWε =Wε ∧Wε with

Wε ∧Wε ∈ L
p
2

loc(U ;∧2 T ∗M ⊗ h).

Recall the following compact Sobolev embedding: If p < 2n,

L
p
2

loc(U ;∧2 T ∗M ⊗ h) ↪→W−1,qloc (U ;∧2 T ∗M ⊗ h) for any q <
pn

2n− p
.

On the other hand, if p ≥ 2n, we can first embed

L
p
2

loc(U ;∧2 T ∗M ⊗ h)→ L
p̂
2

loc(U ;∧2 T ∗M ⊗ h) for 2 < p̂ < 2n,

and then compactly embed the right-hand side into W−1,qloc . Thus, {dWε} is

pre-compact in W−1,qloc (U ;∧2T ∗M ⊗h) for some 1 < q < 2. On the other hand,

the Rellich lemma implies that {dWε} is pre-compact in W−1,ploc (U ;∧2T ∗M⊗h)
for p > 2. By interpolation, we find that

{dWε} is pre-compact in H−1loc (U ;∧2T ∗M ⊗ h).

Owing to the super-commutativity of d, we have

d(Wε ∧ ϕ) = dWε ∧ ϕ−Wε ∧ dϕ.

Therefore, we conclude{
d(Wε ∧ ϕ)

}
is pre-compact in H−1loc (U ;∧2 T ∗M ⊗ h). (4.3)
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Next, consider the rightmost side of Eq. (4.2). Recall that the L2-adjoint
of d (the co-differential), denoted by δ : ∧jT ∗M → ∧j−1T ∗M for 1 ≤ j ≤ n,
is related to d by

δ = (−1)j(n−j)+1 ? d ? .

The Hodge star extends to an isometric isomorphism

? : Lq(U ;∧jT ∗M)→Lq(U ;∧n−jT ∗M) for each 0 ≤ j ≤ n.

For M with signature ν,

?? = (−1)j(n−j)+ν id∧jT∗M ,

where id denotes the identity map. Then we have obtained another differential
constraint:

{δ ?Wε} is pre-compact in H−1loc (U ; h). (4.4)

3. In view of the arguments in Step 2 above, especially Eqs. (4.3)–(4.4), it
suffices to establish the following claim, which is of generality:

Claim: Let {Vε} be a family of (n− 1)-forms so that {dVε} is pre-compact in
H−1loc , and let {Zε} be a family of (n− 1)-forms so that {δZε} is pre-compact
in H−1loc . Assume that Vε ⇀ V and Zε ⇀ Z weakly in Lploc. Then {〈Vε, Zε〉}
converges to 〈V,Z〉 in the sense of distributions.

Indeed, if the claim is true, we defineVε :=Wε ∧ ϕ ∈ Lploc(U ;∧n−1T ∗M ⊗ h),

Zε := ?Wε ∈ Lploc(U ;∧n−1T ∗M ⊗ h).

The above claim implies that 〈Wε∧ϕ, ?Wε〉 → 〈W∧ϕ, ?W〉 in the sense of dis-
tributions. Using the identities of the Hodge star and the super-commutativity
of the wedge product, we deduce

〈Wε ∧ ϕ, ?Wε〉 = (−1)νWε ∧ ϕ ∧ ? ?Wε

= (−1)2ν+n−1Wε ∧ ϕ ∧Wε

= (−1)2ν+2(n−1)Wε ∧Wε ∧ ϕ
=Wε ∧Wε ∧ ϕ.

Therefore, the previous convergence result is equivalent to the following:

Wε ∧Wε ∧ ϕ −→W ∧W ∧ ϕ in the sense of distributions.

Since the test form ϕ is arbitrary, the proof is now complete.

4. We now prove the claim in Step 3 by making crucial use of Theorem 3.2.
The key is to specify operator T and the vector bundles E and F therein.



32 Gui-Qiang G. Chen, Siran Li

Indeed, we define

E :=
(
∧n−1T ∗M ⊗ h

)
⊕
(
∧n−1T ∗M ⊗ h

)
,

F :=
(
∧nT ∗M ⊗ h

)
⊕
(
∧n−2T ∗M ⊗ h

)
,

T := d⊕ δ,

where T is a bundle operator T : E → F . In this setting, the operator cone
is given by

ΛT =

ß
(µ, λ)> ∈ Γ (E) :

[σ1(d)(ξ)](µ) = 0 and [σ1(δ)(ξ)](λ) = 0
simultaneously for some ξ ∈ T ∗M \ {0}

™
,

where we have utilized

σ1(d⊕ δ) = σ1(d)⊕ σ1(δ).

It is an identity on P1(T ∗M ; Hom(E;FC)), i.e., the space of first-order ho-
mogeneous polynomials that map the cotangent bundle to the homomorphism
bundle from E to FC.

We can further specify ΛT . Indeed, recall that the principal symbols of
d and δ have global intrinsic representations (cf. §3.1, [1]):

σ1(d)(ξ) = −(2πi)ξ∧, σ1(δ)(ξ) = (2πi)ιξ] ,

where ξ] is the element of the tangent bundle TM canonically isomorphic
to ξ (which can be obtained by raising the indices in the local coordinates),
and ιX is the interior multiplication of a differential form by the vector field
X ∈ Γ (TM). Then

ΛT =

ß
(µ, λ)> ∈ Γ (E) :

ξ ∧ µ = 0 and ιξ](λ) = 0 simultaneously
for some ξ ∈ T ∗M \ {0}

™
. (4.5)

Notice that ξ ∧ µ = 0 if and only if µ = (ξ ∧ µ̃) ⊗ A for some A ∈ h and
µ̃ ∈ ∧n−2T ∗M . Also, ιξ](λ) = 0 if and only if {λ̃, ξ} span an orthogonal

subspace in T ∗M so that λ = λ̃⊗B for B ∈ h.
Now, define the quadratic polynomial Q : Γ (E)→ R by

Q((µ, λ)>) := 〈µ, λ〉.

The bracket, 〈·, ·〉, on the right-hand side is the combination of the inner
product on ∧n−1T ∗M and the matrix product on h. Thus, for (µ, λ)> ∈ ΛT ,
we have

Q((µ, λ)>) = 〈(ξ ∧ µ̃)⊗A, λ̃⊗B〉 = 〈ξ ∧ µ̃, λ̃〉 ⊗ (A ·B),

where · denotes the matrix multiplication.
Then 〈ξ∧µ̃, λ̃〉 = 0. Indeed, recall that the dot product 〈·, ·〉 on ∧n−1T ∗M

is induced from the inner product on T ∗M by the following rule: For two
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(n−1)-tuples of basic elements in the cotangent bundle T ∗M : {θi1 , . . . , θin−1}
and {θj1 , . . . , θjn−1}, define〈

θi1 ∧ . . . ∧ θin−1 , θj1 ∧ . . . ∧ θjn−1
〉

:= det
(
〈θik , θjl〉1≤k,l≤n−1

)
. (4.6)

In particular, if some θik is orthogonal to θjl in T ∗M , then the right-hand
side of Eq. (4.6) vanishes. By Eq. (4.5) and the ensuing remark, ξ and λ̃ are
orthogonal, so that 〈ξ ∧ µ̃, λ̃〉 = 0. In effect, we have checked the hypotheses
on the operator cone in Theorem 3.2; that is, the quadratic polynomial Q
vanishes on cone ΛT .

In view of the above arguments, conditions (C-1)–(C-3) in Theorem 3.2
are verified. Applying this theorem, we obtain

Q((Vε, Zε)
>) := 〈Wε ∧ ϕ, ?Wε〉 −→ 〈W ∧ ϕ, ?W〉 =: Q((V,Z)>)

in the sense of distributions. Then the claim follows, so that the theorem is
proved.

The equivalence between the Cartan structural system and the GCR
system (Proposition 2.1) implies the weak continuity of the GCR system:

Theorem 4.2 Let (M, g) be a semi-Riemannian manifold of dimension n with
Ind(M) = ν, g ∈ L∞loc(M,O(ν, n − ν)), and the Levi–Civita connection ∇ of
g in Lploc for p > 2. Assume that a family of second fundamental forms and
normal affine connections {(IIε,∇⊥ε )} is uniformly bounded in Lploc, and each
(IIε,∇⊥ε ) satisfies the GCR system (2.8)–(2.10) in the sense of distributions.
Then, after passing to a subsequence if necessary, {(IIε,∇⊥ε )} converges weakly
in Lploc to (II,∇⊥) that also satisfies Eqs. (2.8)–(2.10).

As remarked in the introduction, §1, the weak continuity of the Cartan
structural and GCR systems (Theorems 4.1–4.2) may alternatively be proved
by using the compensated compactness theorems in the Euclidean spaces. For
example, the following “generalized div-curl lemma” for wedge products was
established as Theorem 1.1 in Robbin–Rogers–Temple [52]:

Let αε ⇀ α in Lploc(Rn) and let βε ⇀ β in Lp
′

loc(Rn), where {αε}, {βε}, α,
and β are differential forms over Rn and 1

p + 1
p′ = 1. Assume that

{dαε} ⊂ W−1,ploc (Rn;T ∗Rn) and {dβε} ⊂ W−1,p
′

loc (Rn;T ∗Rn) are pre-
compact. Then αε ∧ βε→α ∧ β in the sense of distributions.

One may apply the above result to deduce Theorem 4.1 by computing in
local coordinates and adapting the arguments in Chen–Slemrod–Wang [14].
On the other hand, independent of the goal of proving the W 2,p continuity
of the GCR and Cartan structural systems, we comment that an extension
for the above theorem in Rn to semi-Euclidean spaces (or more generally, to
semi-Riemannian manifolds) appears elusive. It does not follow from direct
adaptations of the arguments in [52]. Indeed, the proof of [52, Theorem 1.1]
relies crucially on the ellipticity of the Laplace–Beltrami operator, for which
the following arguments beneath [52, Eq. (4.26), page 616] are central:
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From the continuity of ∆−1 from W−1,p(Ω) to W 1,p(Ω)1, we conclude

∆−1dαε ∈ a compact set in W 1,p(Ω).

However, the Laplace–Beltrami operator ∆ on a semi-Riemannian manifold
is never elliptic, unless the manifold is Riemannian, so that the arguments in
[52] cannot pass through in the semi-Riemannian setting.

To conclude this section, we note that the weak continuity of the GCR
and Cartan structural systems (Theorems 4.1–4.2) does not require any as-
sumption on the topology of (M, g).

5 Realization Theorem: From the Cartan Structural Systems to
Isometric Immersions of Semi-Riemannian Manifolds

In this section, we address the following problem:

Given an n-dimensional semi-Riemannian manifold (M, g) of lower
regularity satisfying the GCR system (cf. Theorem 2.1) in the sense
of distributions, seek an isometric immersion f : (M, g) ↪→ (Rn+k, g0)
with the semi-Euclidean metric g0.

We refer to it as the realization problem — Given a weak solution (II,∇⊥) to
the compatibility equations, we would like to realize it as the geometric data
of an isometric immersion.

For a Riemannian manifold M , the realization problem is settled in the
affirmative if M is simply-connected. The C∞ case was proved by Tenenblat
[61], and the W 2,p

loc case for p > dim(M) by Mardare [43,44] and Szopos [58]. In
[12], we also provided a geometric and intrinsic proof. Although the realization
problem for semi-Riemannian manifolds is viewed as a “folklore theorem” (cf.
Chen [10]), we still find it necessary and non-trivial to give a detailed proof.
Indeed, new ideas are required in the following two main points:

(i) the interplay of Cartan’s formalism and semi-Riemannian geometry,

(ii) the treatment of manifolds of lower regularity.

5.1 Statement of the Realization Theorem

First of all, we note that the following two conditions are necessary for
the realization problem:

(R1) The resulting map f must be an immersion of M as a semi-Riemannian
submanifold;

(R2) The indices of manifold M and its normal bundle TM⊥ = f∗TRn+k/TM
(see Convention 2.2) add up to the index of the target space:

Ind(M) + Ind(TxM
⊥) = Ind(Rn+k) for each x ∈M.

1 There is a typo in [52]: the second W−1,p(Ω) therein should be W 1,p(Ω).
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Indeed, condition (R1) holds since f is an isometry (f∗g0 = g), and a
semi-Riemannian metric is non-degenerate by definition. For example, it rules
out the possibility that a semi-Riemannian manifold is isometrically embedded
into the lightcone of the Minkowski spaces. Condition (R2) is a consequence
of (R1) together with the direct sum decomposition in Eq. (2.2).

From now on, we fix the target semi-Euclidean metric to be g̃0 (defined
as in §2.1):

g̃0 = diag(−1, · · · ,−1︸ ︷︷ ︸
ν times

, 1, · · · , 1︸ ︷︷ ︸
n− ν times

;−1, · · · ,−1︸ ︷︷ ︸
τ times

, 1, · · · , 1︸ ︷︷ ︸
k − τ times

), (5.1)

and fix Ind(M) = ν. As before, we write the corresponding semi-Euclidean
space as Rn+kν+τ .

The main result of this section is Theorem 5.1 below. It gives an affir-
mative answer to the realization problem of semi-Riemannian manifolds with
lower regularity, provided that conditions (R1)–(R2) are satisfied and that the
manifold is simply-connected.

Theorem 5.1 Consider an n-dimensional simply-connected semi-Riemannian
manifold (M, g) with metric g ∈ W 1,p

loc (M ;O(ν, n − ν)) for p > n and ν =
Ind(M) ∈ {0, 1, · · · , n}. Suppose that E is a bundle over M with fiber F = Rkτ ,
bundle metric gE ∈ W 1,p

loc (M ;O(τ, k − τ)), and bundle connection ∇E ∈
Lploc(M ;T ∗M⊗EndE) compatible with gE. Let II ∈ Lploc(M ; Sym2T ∗M⊗E) be
a symmetric two-tensor, and let S be defined by g(SαX,Y ) = gE(II(X,Y ), α)
for any X,Y ∈ Γ (TM) and α ∈ Γ (E). Moreover, assume that the GCR
system on E holds in the sense of distributions. Then there exists a W 2,p

loc iso-

metric immersion f : (M, g) ↪→ (›M = Rn+kν+τ , g̃0) so that the normal bundle

TM⊥ := f∗T›M/TM , the second fundamental form, and the shape operator
induced by f are identified with E, II, and S, respectively, and f is unique

modulo the rigid motions in (›M, g̃0).

In addition, if g, ∇E, gE, II ∈ C∞, then there exists a smooth isometric

immersion f ∈ C∞(M ;›M).

Remark 5.1 Concerning the statement of Theorem 5.1, we have

(i) ∇E is said to be compatible with gE if, for any X ∈ Γ (TM) and α, β ∈
Γ (E),

XgE(α, β) = gE(∇EXα, β) + gE(α,∇EXβ). (5.2)

For example, the Levi–Civita connection on M is compatible with g. As in
Convention 2.6, we may express Eq. (5.2) as

X〈α, β〉 = 〈∇EXα, β〉+ 〈α,∇EXβ〉.
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(ii) For a bundle E over M , Sym2E∗ denotes the space of symmetric 2-tensors
defined on E, i.e., each M ∈ Γ (Sym2E∗) satisfies M(α, β) = M(β, α) for
any α, β ∈ Γ (E). Note that, in general, a semi-Riemannian metric g on M
does not lie in Γ (Sym2T ∗M). Instead, g ∈ Γ (O(ν, n− ν)) as gijε

j = gjiε
i

(cf. §2.1 for the notations).

Remark 5.2 Theorem 5.1 has a global topological consequence as follows: If
the GCR equations on the abstract vector bundle E are satisfied under the
indicated regularity assumptions, then the trivial rank-(n+ k) bundle TRn+kν+τ

has the following Whitney sum decomposition:

TRn+kν+τ = TM ⊕ E.

Remark 5.3 Theorem 5.1, together with Proposition 2.1, yields the equiva-
lence of the following statements, provided that (M, g) is simply-connected
and p > dim M :

(i) The existence of isometric immersions of semi-Riemannian manifolds;

(ii) The solvability of the GCR system in the sense of distributions;

(iii) The solvability of the Cartan structural system in the sense of distributions.

5.2 Proof of the Realization Theorem, Theorem 5.1

If everything is C∞, then the Frobenius theorem on the equivalence of
involutive and completely integrable distributions can be directly applied, and
hence we may adapt the proof by Tenenblat [61] for the smooth Riemannian
case. In the case of lower regularity, we only need to replace the Frobenius
theorem with an analogous existence and regularity theorem for certain first-
order PDE systems with Sobolev coefficients.

Proof of Theorem 5.1. Without loss of generality, we can first assume the
result holds for the C∞ case. As remarked above, to this end, we can adapt
Tenenblat’s arguments in [61], taking into account various modifications re-
quired by non-trivial signatures in the semi-Riemannian setting. See Appendix
A.5 for the details of the proof.

Now we show for the lower regularity case: g ∈ W 1,p
loc (M,O(ν, n− ν)).

As in Appendix A.5, assume that the Pfaff and Poincaré systems with

g ∈W 1,p
loc (M,O(ν, n− ν)), W ∈ Lploc(U ⊂M ; o(ν + τ, (n+ k)− (ν + τ)))

are solved; that is, there exist a bundle connection A and an immersion f in
the following spaces:A ∈W

1,p
loc (U ⊂M ;O(ν + τ, (n+ k)− (ν + τ))),

f ∈W 2,p
loc (M ;›M),



Weak Continuity of Cartan Structural System & Compensated Compactness 37

such that rank(df) = n. Then f is indeed an W 2,p
loc isometric immersion by

construction. The Pfaff and Poincaré systems are, respectively, as follows:

W = dA ·A−1, A(0) = A(x0), (5.3)

and
df = ˜Θ ·A, f(0) = f(x0), (5.4)

where x0 is a given point in a local chart U ⊂M .
The solvability of the Poincaré system (5.4) with Sobolev coefficients is

easy to be established. For any given

A ∈W 1,p
loc (U ⊂M ;O(ν + τ, (n+ k)− (ν + τ))),

we want to solve for f in W 2,p
loc (M ;›M). Since all the results are stated in local

Sobolev spaces, it suffices to assume that U is a smooth bounded open subset
of Rn. In this setting, choose Jε ∈ C∞(Rn) to be the standard mollifier and
set Θε := Jε ∗ (˜Θ ·A). It follows that

Θε −→ ˜Θ ·A in W 1,p(U ;›M) as ε→ 0+.

In particular, {Θε} is uniformly bounded in W 1,p.
Now, Θε is a smooth closed 1-form (cf. Appendix A.5) for each ε > 0,

so we can invoke the solvability of the Poincaré system in the C∞ case to find

some fε ∈ C∞(U ;›M) with dfε = Θε. By adding a constant, we may assume
that

∫
U
fε dx = 0. Then the Poincaré inequality gives us

‖fε‖W 2,p(U ;›M)
≤ C

(
‖fε‖W 1,p(U ;›M)

+ ‖Θε‖W 1,p(U ;›M)

)
.

Hence, thanks to the Rellich lemma and the uniform boundedness of {Θε} ⊂
W 1,p(U ;›M), we obtain that ‖fε‖W 2,p(U ;›M)

≤ C0 <∞. Therefore, there exists

a limiting function f̃ so that fε → f̃ in W 2,p(U ;›M) (modulo subsequences)
with df̃ = ˜Θ ·A.

The Pfaff system (5.3) with Sobolev coefficients is more difficult to
tackle: The Frobenius theorem cannot be directly applied, since we need at
least C1–regularity; in addition, we cannot apply a simple mollification ar-
gument, since the compatibility condition (i.e., the second structural system
dW =W ∧W) contains quadratic nonlinear terms.

However, the following result serves for our purpose:

Lemma 5.1 (Mardare [44]) Let Ω ⊂ Rn be a simply-connected open set,
x0 ∈ Ω, and M0 ∈ gl(l;R). Then the following system:

∂M

∂xi
= Si ·M, i = 1, 2, . . . , n, M(x0) = M0,

with the matrix fields Si ∈ Lploc(Ω; gl(l;R)) for i = 1, 2, . . . , n, and p > n, has a

unique solution M ∈W 1,p
loc (Ω; gl(l;R)) if and only if the following compatibility

condition holds:

∂Si

∂xj
− ∂Sj

∂xi
= [Si,Sj ] for each i, j = 1, 2, . . . , n, (5.5)

in the sense of distributions.
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As Lemma 5.1 is formulated for Ω ⊂ Rn, we correspondingly take U ⊂
M as a trivialized local chart so that bundle E can be regarded as U×Rk over
U . Hence, on U , without loss of generality, we may assume that [∂i, ∂j ] = 0.
We take

S =W ∈ Lploc(U ;T ∗M ⊗ o(ν + τ, (n+ k)− (ν + τ))), Si =W(∂i).

Then

∂iSj − ∂jSi = ∂i(W(∂j))− ∂j(W(∂i)) +W([∂i, ∂j ]) = dW(∂i, ∂j).

On the other hand, we have

[Si,Sj ] =W(∂i) · W(∂j)−W(∂j) · W(∂i) = (W ∧W)(∂i, ∂j).

Thus, the compatibility condition in Lemma 5.1 is verified by the second struc-
tural system (2.13). The Pfaff system (5.3) with Sobolev coefficients is hence
uniquely solvable on local charts.

Therefore, we now arrive at the existence of a local isometric immersion
in the lower regularity case, provided that the second structural system (or
equivalently, the GCR system) holds in the sense of distributions.

Finally, we deduce the global existence of an isometric immersion, which
follows from a standard monodromy argument. Given any two points x, y ∈M
with x 6= y, we connect them by a continuous curve (again since W 1,p

loc ↪→ C0
loc

for p > n), denoted by γ : [0, 1] → M with γ(0) = x and γ(1) = y. More
precisely, γ is chosen as a continuous representative in the Sobolev space. Let
f be the W 2,p

loc isometric immersion in a neighborhood of x, whose existence
is guaranteed by the earlier steps. We cover γ([0, 1]) by finitely many charts
{V 1, . . . , V N}. By the uniqueness statement in Lemma 5.1, we can extend the

isometric immersion f to
⋃N
i=1 V

i, especially including a neighborhood of y.

Thus, it suffices to show that the extension of f is independent of the
choice of γ. Indeed, if η : [0, 1] → M is another continuous curve connecting
x and y, by concatenating γ with η, we form a loop L ⊂M . As M is simply-
connected, the restriction f |L is homotopic to a constant map so that (f ◦
γ)(1) = (f ◦ η)(1). In this way, we have verified that f can be extended to a

global isometric immersion of M into›M , provided that M is simply-connected.
This completes the proof.

As a remark, in the realization theorem, Theorem 5.1, it requires that
g ∈ W 1,p

loc with p > n = dim M . This is because of both the regularity as-
sumptions in Lemma 5.1 and the continuity requirements for the topological
arguments. All the other results in this paper hold for p > 2, regardless of the
dimension of M . Also note that (M, g) is assumed to be simply-connected in
Theorem 5.1, which prevents the occurrence of branched immersions.
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5.3 Weak Rigidity of Isometric Immersions of Semi-Riemannian Manifolds

Recall that, in Theorem 4.1, we have established the weak continuity of
the Cartan structural system on a semi-Riemannian (M, g) and, in Proposition
2.1, we have shown the equivalence of the structural system with the GCR
system, both for p > 2 regardless of dimM . If we translate this PDE-theoretic
weak continuity theorem into geometric settings, then it is unsurprising that
the W 2,p

loc isometric immersions of M are weakly rigid. More precisely, we have

Theorem 5.2 Let (M, g) be a semi-Riemannian manifold of dimension n
with Ind(M) = ν, g ∈ L∞loc(M ;O(ν, n − ν)), and the Levi–Civita connec-

tion ∇ of g in Lploc for p > 2. Let {fε} ⊂ W 2,p
loc (M ;Rn+k) be a family of

isometric immersions of semi-Riemannian submanifolds, with the second fun-
damental forms {IIε} and normal connections {∇⊥ε } satisfying GCR system
(2.8)–(2.10). Assume that {fε} is uniformly bounded in W 2,p

loc and Rn+k is en-
dowed with the semi-Euclidean metric g̃0 as in Eq. (5.1). Then, after passing
to a subsequence if necessary, {fε} weakly converges in W 2,p

loc to an isomet-

ric immersion f ∈W 2,p
loc (M ;Rn+k); in addition, the second fundamental form

and the normal connection of f are the weak Lploc limits of {IIε} and {∇⊥ε },
respectively, and still satisfy the GCR system.

The same result holds if {(IIε,∇⊥ε )} are replaced by the connection 1-
forms {Wε}, and the GCR system is replaced by the Cartan structural system
(2.13).

Proof Let {fε} be a bounded family in W 2,p
loc where p > 2. Then, modulo

subsequences, {dfε} is weakly convergent inW 1,p
loc , hence strongly convergent in

Lploc due to the Rellich lemma. Thus, after passing to a subsequence and thanks

to the Hölder inequality, g̃0(dfε,dfε) converges strongly in L
p
2

loc to g̃0(df̃, df̃),

which equals to metric g by assumption, where f̃ is a weak W 2,p
loc ∩W

1,∞
loc limit

of {fε}. In addition, by passing to a further subsequence, we may deduce that
dfε → df̃ a.e. from the strong Lploc convergence and that g̃0(df̃, df̃) = g a.e.

from the strong L
p
2

loc convergence, by virtue of p > 2. This shows that f̃ is an
isometric immersion, again in the a.e. sense.

On the other hand, by the weak continuity of the GCR system in Theo-
rem 4.1, we find that the second fundamental form and the normal connection
of the limiting isometric immersion f̃ — which are weak Lploc limits of the re-
lated quantities for fε (possibly modulo a further subsequence) — satisfy the
GCR equations in the sense of distributions. This observation together with
Proposition 2.1 completes the proof.

In the case that p > n, the above result follows directly from the realiza-
tion theorem (Theorem 5.1), together with Theorem 4.1 and Proposition 2.1.
In fact, it can be proved easily for p > n without applying any of the ma-
chineries above, but just using the Sobolev-Morrey embedding W 2,p

loc ↪→W 1,∞
loc

and the identity IIjk = ∂j∂kf − Γ ijk∂if (see, e.g., Bryant–Griffith–Yang [8,
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page 959] for the Riemannian case). The main point of our arguments here is
to extend to the case p > 2, irrespective of dim M .

In particular, we comment that, under the stronger hypotheses that both
M is simply-connected and p > n = dim M , Theorems 4.1–4.2 can be deduced
easily from the realization theorem (Theorem 5.1), in view of Remark 5.3.

Alternative Proof for Theorem 4.1–4.2 with π1(M) = {0} and p > n.

Without loss of generality, we may assume that M is compact and that
fε converges weakly in W 2,p to a map f : M→Rn+kν+τ . Since the embedding
W 1,p ↪→ C0 is now compact for p > n, by choosing continuous representatives
in suitable Sobolev classes, gε := f∗ε g̃0 converges uniformly to g := f∗g̃0 ∈
W 1,p.

Note that fε : (M, gε) ↪→ (Rn+kν+τ , g̃0) and f : (M, g) ↪→ (Rn+kν+τ , g̃0) are
isometric immersions by construction. By the realization theorem, Theorem
5.1, the connection 1-forms Wε and W (corresponding to fε and f , respec-
tively) satisfy the Cartan structural systems:

dWε =Wε ∧Wε, dW =W ∧W.

These two systems are well-defined, with the left-hand sides in W 1,p and the
right-hand sides in L

p
2 for p > n ≥ 2. Also, Definition 2.8 for the connection

1-forms implies thatWε ⇀W in Lp. Then Theorem 4.1 follows when π1(M) =
{0} and p > n. We can conclude Corollary 4.2 from Proposition 2.1.

Nonetheless, we emphasize once more that the above short proof is
available only for p > n; the argument does not extend to the less stringent
case p > 2, even with Theorem 5.2 at hand. This is because the current proof
of the realization theorem (Theorem 5.1; cf. also Szopos [58]) essentially needs
p > n, as it is crucial for Lemma 5.1.

6 Further Applications

In this final section, we present some further applications of the results
and techniques developed in §2–§5 above.

(i) Using the weak continuity of isometric immersions (Theorem 5.2), we show
the weak continuity of the constraint equations in general relativity;

(ii) Directly utilizing the geometric compensated compactness theorem, The-
orem 3.2, we establish the weak continuity of quasilinear wave equations
satisfying the null condition (introduced first by Klainerman [37]; see also
[22,38]).

(iii) Employing a generalized version of the GCR system, we prove the weak
continuity of general immersed hypersurfaces, i.e., the 1-co-dimensional
submanifolds with possibly degenerate induced metrics.
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6.1 Weak Rigidity of Einstein’s Constraint Equations

Let (V, g) be a Lorentzian manifold of dimension N + 1. The vacuum
Einstein field equation is

Ricg = 0,

that is, the Ricci curvature of g vanishes. This system consists of (N+1)(N+2)
2

scalar equations, in which N + 1 equations are determined by the initial
data on some space-like hypersurface via the Gauss–Codazzi equations. These
N + 1 equations are known as Einstein’s constraint equations; see Bartnik–
Isenberg [4], Choquet–Bruhat [16], Corvino–Schoen [23], and the references
cited therein.

In the Minkowski case (RN+1,m), we can show the following theorem:

Theorem 6.1 Let M be a space-like hypersurface of the Minkowski space-
time (RN+1,m) with a family of immersions {fε}. Denote by γε := f∗εm the
pull-back metrics on M . Suppose that, for each fixed ε > 0, (M,γε) satisfies
the Einstein constraint equations in the vacuum:®

scalε + (trγεhε)
2 − |hε|2 = 0,∑N

j=1
‹∇j((hε)ij − trγε(hε)(γε)ij

)
= 0 for i = 1, 2, . . . , n.

(6.1)

In the above, ‹∇ is the Levi–Civita connection on (RN+1,m), scalε is the scalar
curvature of (M,γε), and hε is the second fundamental form:‹∇XY = (∇ε)XY + hε(X,Y )nε for all X,Y ∈ Γ (TM),

where ∇ε is the Levi–Civita connection on (M,γε) and nε is the time-like
unit normal. If {fε} is uniformly bounded in W 2,p

loc (M,RN+1) for p > 2, then

it converges weakly in W 2,p
loc to an immersion f̃ : M→(RN+1,m) such that

(M, f̃∗m) satisfies Einstein’s constraint equations in the sense of distributions.

Proof By construction, fε : (M,γε)→(RN+1,m) is an isometric immersion for
each ε > 0. Then fε ⇀ f̃ in W 2,p

loc , where f̃ is an isometric immersion whose
second fundamental form satisfies the Gauss–Codazzi equations in the sense
of distributions, by Theorem 5.2. However, the constraint equations (6.1) are
implied by the Gauss–Codazzi equations (see Bartnik–Isenberg [4]). In view
of Remark 5.3, the assertion now follows.

6.2 Weak Continuity of Quasilinear Wave Equations

Now we give an application of our quadratic theorem of compensated
compactness, i.e., Theorem 3.2, to the weak continuity of a special class of
nonlinear wave equations:

�mφ
I = F I(φ, ∂φ) for all I ∈ {1, 2, . . . , N}. (6.2)
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This system is posed on (R3+1,m), where m = diag(−1, 1, 1, 1) is the Minkowski
metric, and F = {F I}1≤I≤N is the source function. We are concerned with
φ = {φI}1≤I≤N : R3+1 → RN . The source function F consists of quadratic
terms with respect to (φ, ∂φ), where ∂ denotes the total space-time derivative.

A classical result due to Christodoulou [22] and Klainerman [38] is the
following: When the smooth initial data is sufficiently small, the Cauchy prob-
lem for Eq. (6.2) has a unique solution φ ∈ C∞c ([0,∞) × R3;RN ), provided
that F satisfies the null condition:

(i) F I(0) = 0 and ∂F I(0) = 0,

(ii) QF I (∂φ) =
∑N
J,K=1

∑3
µ,ν=0A

µν
IJK(∂µφ

J)(∂νφ
K) for each I ∈ {1, 2, . . . , N}

with

3∑
µ,ν=0

AµνIJKξµξν = 0

for any null co-vector ξ ∈ T ∗R3+1 and I, J,K ∈ {1, 2, . . . , N}, where QF I
denotes the quadratic part in ∂φ in the Taylor expansion of F I at (φ, ∂φ) =
0:

QF I (z) :=
∑
|α|=2

∂αF
I(0)

α!
zα for all z ∈ RN

in the multi-index notations, and ξ ∈ T ∗R3+1 is a null co-vector if and only
if mµνξµξν = 0.

For our purpose, we take the following bundle of type–(1, 1) tensors:

E = T ∗R3+1 ⊗ TRN .

Then, for each I ∈ {1, 2, . . . , N}, define the bundle operator TI ∈ Hom(E;R):

TI s :=

N∑
J,K=1

3∑
µ,ν=0

AµνIJK(∂νs
J
µ)θK , (6.3)

where {θK} ⊂ T ∗RN is the co-vector basis dual to {∂K}. The associated
operator cone is

ΛTI :=

®
λ ∈ T ∗R3+1 ⊗ TRN :

∑3
µ,ν=0A

µν
IJKλ

J
µs
K
ν = 0 for some non-zero

section s ∈ Γ (T ∗R3+1 ⊕ TRN ) \ {0}

´
.

(6.4)

The following observation is crucial: For each null co-vector ξ ∈ T ∗R3+1,
if it is identified with ξ ⊗ id ∈ T ∗R3+1 ⊗ TRN (where id is the tautological
tensor on TRN ), then it lies in ΛTI . In other words, the null cone of the space-
time (R3+1,m) can be viewed as a subset of the operator cone ΛTI for every
I ∈ {1, 2, . . . , N}.
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Also, for each I ∈ {1, 2, . . . , N}, consider the quadratic form:

QF I (s) :=

N∑
J,K=1

3∑
µ,ν=0

AµνIJKs
J
ν s
K
µ for s = {sJµ}1≤J≤N,0≤µ≤3 ∈ Γ (E). (6.5)

It can be defined intrinsically on Γ (E). It is easy to check that QF I agrees
with the quadratic terms in ∂φ of the source term F I .

Now, applying Theorem 3.2 to the sequence of sections

{∂φε} ⊂ L2
loc(R3+1;T ∗R3+1 ⊗ TRN ),

we obtain the following compensated compactness framework, which enables
us to verify the H1

loc weak continuity of Eq. (6.2). Indeed, it requires to pass
the limits in the source term F I(φε, ∂φε), as the left-hand side of the equation
is linear in φε.

Proposition 6.1 Let the source term F I(φ, ∂φ) satisfy the null condition so
that

QF I (s) = 0 for any s ∈ ΛT I , (6.6)

where the operator cone ΛT I is defined according to Eqs. (6.4)–(6.5). Assume
that {φε} is a family of functions in H1

loc(R3+1,RN ) such that

(i) φε ⇀ φ weakly in H1
loc;

(ii)
{∑N

J=1

∑3
µ,ν=0A

µν
IJK∂µ∂νφ

J
ε

}
is pre-compact in H−1loc (R3+1) for all I,K ∈

{1, 2, . . . , N}.

Then

QF I (∂φε) ⇀ QF I (∂φ) in the sense of distributions.

As a consequence, if Eq. (6.2) admits a family of weak solutions {φε} ⊂
H1

loc(R3+1,RN ) satisfying (i)–(ii), then the weak limit φ in H1 is also a weak
solution of (6.2).

In particular, a necessary condition for (6.6) above is that QF I (ξ⊗ id) =
0 for any null co-vector ξ ∈ T ∗R3+1.

The above proposition shows that the quasilinear wave equation with
null condition in 3 + 1 dimensions is weakly continuous in H1

loc. However, it
is well-known (cf. Rodnianski [53]) that the Einstein equations fail to satisfy
the null conditions, even in the vacuum or scalar field cases. It would be
interesting to analyze further the weak continuity of the Einstein equations
and other physical/geometric PDEs.
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6.3 Weak Rigidity of General Immersed Hypersurfaces

We now discuss the weak rigidity of immersed hypersurfaces that are not
semi-Riemannian submanifolds of the ambient spaces. It is remarked in §5.1
(cf. Condition (R1)) that, if metric g̃0 is degenerate on a hypersurface Σ, then
Σ cannot be obtained via an isometric immersion of any semi-Riemannian
manifold. Nevertheless, such degenerate scenarios occur naturally in physics.

One primary example is the lightcone:

Λ = {(t, x1, x2, x3) ∈ R4 : t2 = x21 + x22 + x23}

of the Minkowski space-time (R3+1,m) with m = diag(−1, 1, 1, 1). Although,
for any x, v ∈ Λ, gx(v, w) 6= 0 for all time-like vectors w in the tangent space
at x, we see that gx(v, ·) ≡ 0 on TxΛ, where Λ is known as a null hyper-
surface. In addition, the stationary limit surface of Kerr’s vacuum solution
is everywhere time-like, except at the points on the axis where it is null and
tangent to the horizon (cf. [45]). A more recent example in [46] is the gluing
of two Anti-de-Sitter (AdS) 5-dimensional space-times with different cosmo-
logical constants along a general hypersurface Σ = ΣE t Σnull t ΣL, where
Σnull is 3-dimensional, such that the restriction of the metric is time-like on
ΣL, space-like on ΣE , and null on S. If the coordinate system is suitably cho-
sen, Σnull may lie in the hypersurface of form {t = t0}. This example gives
a possible model for the transition between two distinct AdS universes across
brane Σ, whence Σnull models the big-bang singularity.

Motivated by the physical applications above, a treatment for the real-
ization problem and the weak rigidity of general hypersurfaces is desired. How-
ever, the constructions in §2.2, especially the derivation of the GCR system or
the Cartan structural system, fail in this case — the orthogonal decomposition
of tangent spaces as in Eq. (2.1) is no longer valid.

To overcome this difficulty, we employ the construction of rigging vector
fields; cf. [40,41,45,54]. The idea is as follows: Consider the hypersurface via

the local embedding ι : Σ ↪→ (›M, g̃). If ι∗g̃ is null, we find a non-vanishing

vector field ` ∈ Γ (ι∗T›M) along Σ so that

Tι(x)›M ∼= TxΣ ⊕ span{`x}. (6.7)

Thus, we can derive the Gauss–Codazzi equations (for hypersurfaces, the Ricci
equation is always trivial) from the orthogonal decomposition (6.7). However,
technicalities are unavoidable because the rigging field ` never coincides with
the normal vector field, whenever Σ is null — this leads to three Codazzi
equations instead of one.

From now on, α always denotes a co-vector field, i.e., an element of
Γ (T ∗Σ). This is in agreement with [45,54]. The first main result in this sub-
section is

Theorem 6.2 Let ι : Σ ↪→ (Rn+1, g̃0) be a W 2,p
loc immersion of a simply-

connected general hypersurface for p > n, for which the pullback tensor ι∗g̃0 is
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allowed to degenerate on Σ. Let the normal 1-form of Σ to be n ∈ Γ (ι∗T ∗Rn+1).
Moreover, assume that ` ∈ Γ (TRn+1) is a rigging vector field, i.e., n(`) = 1
everywhere on Σ. Take {ei}ni=1 ⊂ Γ (TΣ) as an orthonormal frame on Σ,
and {θi}ni=1 ⊂ Γ (T ∗Σ) as its co-frame. Furthermore, define the tensor fields
K ∈W 1,p

loc (Σ;∧2T ∗Σ) and Ψ ∈W 1,p
loc (Σ;TΣ ⊗ T ∗Σ) = W 1,p

loc (Σ; EndTΣ) by

K := ‹∇n, Ψ := ‹∇`,
that is,

K(X,Y ) = ‹∇n(X,Y ), Ψ(α,X) := α(‹∇X`)
for each X,Y ∈ Γ (TΣ) and α ∈ Γ (T ∗Σ). Define also ψ ∈W 1,p

loc (Σ;T ∗Σ) by

ψ(X) := n(‹∇X`).
Then the following equations hold in the sense of distributions:

α(R(X,Y )Z)−K(Y,Z)Ψ(α,X) +K(X,Z)Ψ(α, Y ) = 0, (6.8)

K(X,∇Y Z)−K(Y,∇XZ) +K([X,Y ], Z) +XK(Y,Z)− Y K(X,Z)

−K(Y,Z)ψ(X) +K(X,Z)ψ(Y ) = 0, (6.9)

XΨ(α, Y )− Y Ψ(α,X) + Ψ(α, [X,Y ]) + ψ(Y )Ψ(α,X)− ψ(X)Ψ(α, Y )

+

n∑
i=1

{
Ψ(θi, Y )α(∇Xei)− Ψ(θi, X)α(∇Y ei)

}
= 0, (6.10)

Xψ(Y )− Y ψ(X) + ψ([X,Y ])

+

n∑
i=1

{
K(ei, Y )Ψ(θi, X)−K(ei, X)Ψ(θi, Y )

}
= 0 (6.11)

for X,Y, Z ∈ Γ (TΣ) and α ∈ Γ (T ∗Σ) such that α(l) = 0, and R is the
Riemann curvature of Σ.

Conversely, if Eqs. (6.8)–(6.11) hold in the sense of distributions for
K ∈ W 1,p

loc (Σ;∧2T ∗Σ), Ψ ∈ W 1,p
loc (Σ; EndTΣ), and ψ ∈ W 1,p

loc (Σ;T ∗Σ), then

there exist an immersion ι ∈ W 2,p
loc (Σ;Rn+1) and a rigging vector field ` ∈

Γ (TRn+1) such that K = ‹∇n, Ψ = ‹∇`, and ψ(X) = n(‹∇X`).
Eq. (6.8) and Eqs. (6.9)–(6.11) are known as the Gauss equation and

the Codazzi equations of the general hypersurface Σ, respectively. As in the
physics literature (cf. [19,45,54]), the geometric quantities {K,Ψ, ψ} are inter-
preted as the intrinsic, extrinsic, and normal second fundamental forms of Σ,
respectively. If metric g̃0 is Lorentzian with signature {−1,+1, . . . ,+1}, the
rigging field ` can be chosen as time-like, whose trajectory thus corresponds
to the worldline of an observer. On the other hand, if g̃0|Σ is non-degenerate,
then ` can be chosen as the unit normal vector field, and Eqs. (6.8)–(6.11)
reduce to the usual Gauss-Codazzi equations in §2.2.
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Proof of Theorem 6.2. The proof consists of three steps. We emphasize
the difference between the case of general hypersurfaces and the case of semi-
Riemannian submanifolds (Theorem 5.1), while the parallel arguments are
only briefly sketched.

1. We first deduce the Gauss–Codazzi equations (6.8)–(6.11) from the immer-
sion ι. As in §2, these equations are obtained by expressing the flatness of Rn+1

(that is, the Riemann curvature ‹R = 0) with respect to the orthogonal split-
ting TxRn+1 ∼= TxΣ ⊕ span (`x). Indeed, from the definition of the Riemann
curvature, we have‹R(X,Y )Z =R(X,Y )Z −K(X,‹∇Y Z)−K(X,‹∇Y Z)`+K(Y,‹∇XZ)`

− ‹∇X(K(Y,Z)`
)

+ ‹∇Y (K(X,Z)`
)

+K([X,Y ], Z)`. (6.12)

The detailed computation can be found in [45, §3], with a slightly different

sign convention for ‹R. The Gauss equation is obtained by contracting with α.
Since α(`) = 0, we have

0 = α(‹R(X,Y ), Z) = α(R(X,Y )Z)− α(‹∇X(K(Y,Z)`)) + α(‹∇Y (K(X,Z)`)),

which yields (6.8) by the definition of Ψ .
To obtain the Codazzi equation (6.9), we consider

n(R(X,Y )Z) = 0,

where n is the normal 1-form. Invoking Eq. (6.12) for ‹R again yields

n(‹R(X,Y )Z) = −K(X,∇Y Z) +K(Y,∇XZ)−K([X,Y ], Z)

− n(‹∇X(K(Y,Z)`)) + n(‹∇Y (K(X,Z)`)).

On the other hand, the Leibniz rule of the connection gives us

n(‹∇Y (K(X,Z)`)) = Y K(X,Z)n(`)−K(X,Z)n(∇Y `),

which, together with n(`) = 1 and the definition of ψ, implies Eq. (6.9).

Next, we consider ‹R(X,Y )` := ‹∇X‹∇Y ` − ‹∇Y ‹∇X` + ‹∇[X,Y ]`. Notice
that‹∇X‹∇Y ` =

n∑
i=1

XΨ(θi, Y )ei +Xψ(Y )`+

n∑
i=1

Ψ(θi, Y )‹∇Xei + ψ(Y )‹∇X`,
where the following key identities are utilized:‹∇XY = ∇XY −K(X,Y )`, ‹∇X` =

n∑
i=1

Ψ(θi, X)ei + ψ(X)`.
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Then‹∇X‹∇Y ` =

n∑
i=1

XΨ(θi, Y )ei +Xψ(Y )`+

n∑
i=1

Ψ(θi, Y )∇Xei

−
n∑
i=1

Ψ(θi, Y )K(ei, X)`+

n∑
i=1

ψ(Y )ψ(θi, X)ei + ψ(X)ψ(Y )`.

A similar expression holds for ‹∇Y ‹∇X` by interchanging X and Y :‹∇Y ‹∇X` =

n∑
i=1

Y Ψ(θi, X)ei + Y ψ(X)`+

n∑
i=1

Ψ(θi, X)∇Y ei

−
n∑
i=1

Ψ(θi, X)K(ei, Y )`+

n∑
i=1

ψ(X)ψ(θi, Y )ei + ψ(Y )ψ(X)`.

Thus, contracting with α ∈ Ω1(Σ) and noting that α(`) = 0, we conclude the
Codazzi equation (6.10).

Finally, the Codazzi equation (6.11) is obtained by contracting ‹R(X,Y )`
with the normal 1-form n. Similarly to the above computations, we have

n(‹∇X‹∇Y `) = n(‹∇X(

n∑
i=1

θi(‹∇Y `)ei + n(∇Y `)`))

= Xψ(Y ) +

n∑
i=1

θi(‹∇Y `)n(‹∇Xei) + ψ(Y )ψ(X)

= Xψ(Y ) + ψ(Y )ψ(X)−
∑
i=1

K(ei, X)Ψ(θi, Y ),

thanks to another important identity:

n(‹∇XY ) = −n(K(Y,X)`) = −K(Y,X). (6.13)

Therefore, computing for n(‹∇Y ‹∇X`) in the similar manner:

n(‹∇Y ‹∇X`) = Y ψ(X) + ψ(X)ψ(Y )−
∑
i=1

K(ei, Y )Ψ(θi, X),

we can deduce Eq. (6.11). Furthermore, observe that the above computations
still hold in the sense of distributions for immersions with lower regularity,
i.e., ι ∈W 2,p

loc (Σ;Rn+1). This proves the first part of the theorem.

2. Now we tackle the realization problem, i.e., finding an immersion ι from
Eqs. (6.8)–(6.11). As in the semi-Riemannian submanifolds case, the key is to
verify the second structural system (2.13) for a suitable connection 1-form.

For this purpose, we invoke the following identity for differential forms:

dβ(X,Y ) = Xβ(Y )− Y β(X) + β([X,Y ]),
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where β ∈ Γ (T ∗Σ) is arbitrary. Thus, we can rewrite the three Codazzi equa-
tions as

dK(X,Y, Z) = K(Y,∇XZ)−K(X,∇Y Z) + ψ(X)K(Y,Z)−K(X,Z)ψ(Y ),

dΨ(α,X, Y ) = ψ(X)Ψ(α, Y )− ψ(Y )Ψ(α,X)

+
∑n
i=1

(
Ψ(θi, X)α(∇Y ei)− Ψ(θi, Y )α(∇Xei)

)
,

dψ(X,Y ) =
∑n
i=1

(
Ψ(θi, Y )K(X, ei)− Ψ(θi, X)K(Y, ei)

)
.

(6.14)
Now, define the connection 1-form WΣ ∈W 1,p

loc (Σ; T ∗Σ ⊗ gl(n+ 1;R))
by

WΣ :=

ï
Γ Ψ
K ψ

ò
. (6.15)

More precisely, in the local coordinates, we write

WΣ :=

ñ
Γ kijθ

k Ψ(θi, ·)

K(ei, ·) ψ(·)

ô
,

where, as usual, the Christoffel symbols are defined via ∇eiej =
∑n
k=1 Γ

k
ije

k

and computed from Γ kij = 1
2g
kl(∂igjl + ∂jgli − ∂lgij). The block-matrix repre-

sentation of W in Eq. (6.15) is interpreted via the following identifications:
Γ = Γ kijθ

k ∈W 1,p
loc (Σ ; T ∗Σ ⊗ gl(n;R)),

Ψ,K ∈W 1,p
loc (Σ ; T ∗Σ ⊗ Rn),

ψ ∈W 1,p
loc (Σ ; T ∗Σ).

Thus, we can recast the Gauss equation (6.8) and the Codazzi equations in
the form of (6.14) into the following schematic equalities:

dK = KΓ − ΓK −Kψ + ψK = K ∧ Γ −K ∧ ψ,
dΨ = ΓΨ − ΨΓ + Ψψ − ψΨ = Γ ∧ Ψ − Ψ ∧ ψ,
dψ = KΨ − ΨK = K ∧ Ψ,

where the juxtaposition of matrices (e.g., KΓ ) denotes the matrix multiplica-
tion, and ∧ is an intertwining of the wedge product on differential forms and
the matrix multiplication.

On the other hand, simple manipulations on block matrices lead to

WΣ ∧WΣ =

ï
Γ ∧ Γ + Ψ ∧K Γ ∧ Ψ + ψ ∧ Ψ
K ∧ Γ +K ∧ ψ K ∧ Ψ

ò
. (6.16)

In this notation, the Riemann curvature is given by

R = dΓ − Γ ∧ Γ ∈ Lploc(Σ ; ∧2 T ∗Σ ⊗ gl(n;R)).

Then the preceding two equations yield

dWΣ −WΣ ∧WΣ = 0, (6.17)
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i.e., the second structural system as in Eq. (2.13).
Invoking again Lemma 5.1, we obtain the local solution A ∈W 1,p

loc (U ⊂
Σ; gl(n+ 1,R)) to the following Pfaff system:

dA =WΣ ·A,

where U ⊂ Σ is an open trivialized neighborhood.

3. Now we solve the local isometric immersion ι : Σ ↪→ Rn+1 via the Poincaré
system:

dι = θ̃ ·A,

where θ̃ = (θ1, . . . , θn, 0)> : U ⊂ Σ → Rn+1 ⊗ T ∗Σ is the Rn+1-valued
differential 1-form. As before, it is solvable if and only if the following first
structural system is satisfied:

dθ̃ = θ̃ ∧WΣ .

Recall that the first structural system holds whenever the affine connection
∇ = ι∗‹∇ is torsion-free (see Appendix A.5). Here, as K(X,Y ) = K(Y,X) (cf.
[40,45]), the torsion-free condition is verified, which leads to the existence of
a solution ι ∈W 2,p

loc (U ;Rn+1).
The assertion now follows from the proof of Theorem 5.1. This completes

the proof.

Remark 6.1 Theorem 6.2 was proved locally in [41] by computations in the
local coordinates. Our proof above, being global and intrinsic in nature, both
helps clarify the geometric meanings of {K,Ψ, ψ} and serves as a crucial step
towards the establishment of the weak rigidity theorem, Theorem 6.3, for gen-
eral hypersurfaces below.

In the proof above, it is crucial to establish the equivalence of the Gauss–
Codazzi equations (6.8)–(6.11) with Eq. (6.17), namely the second structural
system forWΣ , which is defined in Eq. (6.15) in terms of the Christoffel symbol
Γ and the intrinsic, extrinsic, and normal second fundamental forms {K,Ψ, ψ}.
Therefore, by invoking the quadratic theorem (Theorem 3.1) and establishing
the weak continuity of dWΣ =WΣ ∧WΣ again, we arrive at the weak rigidity
theorem for the general hypersurfaces:

Theorem 6.3 Let (Σ, g) be a simply-connected n-dimensional hypersurface
of semi-Euclidean space Rn+1 with Ind(Σ) = ν and g ∈ W 1,p

loc (Σ,O(ν, n− ν))
for p > n. Let {fε} be a family of immersions of semi-Riemannian sub-
manifolds uniformly bounded in W 2,p

loc (Σ;Rn+k), and let {lε} be an associated

family of rigging vector fields uniformly bounded in W 1,p
loc (Σ;TΣ). Denote by

{Kε, Ψε, ψε} the corresponding intrinsic, extrinsic, and normal second funda-
mental forms. Then, after passing to a subsequence if necessary, {fε} converges
to an immersion f ∈W 2,p

loc (Σ;Rn+1) in the sense of distributions; in addition,
its intrinsic, extrinsic, and normal second fundamental forms are weak limits
in Lploc of {Kε}, {Ψε}, and {ψε}, respectively.
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Proof First, thanks to Eq. (6.16), all the entries of the 2–form-valued matrix
WΣ ∧WΣ are linear combinations of the quadratic forms in Γ, Ψ,K, and ψ,

each of which lies in W 1,p
loc . Thus, WΣ ∧WΣ ∈ W 1, p2

loc by the Cauchy–Schwarz

inequality, which is compactly embedded in W−1,qloc for some 1 < q < 2, as
computed in Step 3 of the proof of Theorem 5.2.

On the other hand, WΣ ∈ W 1,p
loc implies that dWΣ ∈ Lploc, which is

compactly embedded into W−1,ploc by the Rellich lemma. Using Eq. (6.16) and
the interpolations of Sobolev spaces, we deduce that {dWΣ

ε } is pre-compact
in H−1loc .

Therefore, with the above pre-compactness result, the proof proceeds
as that for Theorem 5.2. In particular, we establish the weak continuity of the
Cartan structural system dWΣ =WΣ ∧WΣ . Then, in view of the realization
theorem (Theorem 6.2) for general hypersurfaces, it implies the existence of
the limiting immersion f , together with a rigging vector field `, for which the
intrinsic, extrinsic, and normal second fundamental forms {K,Ψ, ψ} are well-
defined. After passing to a subsequence if necessary, {Kε, Ψε, ψε} converges
in the weak Lploc topology to {K,Ψ, ψ} due to the uniqueness of weak limits.
Then the proof is completed.

Appendix A Proofs of Several Semi-Riemannian Geometric
Theorems

In this appendix, we provide the proofs of several semi-Riemannian ge-
ometric theorems, whose Riemannian analogues are well-known. These results
are viewed as folklores in the geometric community, but the proofs appear
elusive in the literature. For the convenience of the reader, now we carefully
write down the complete proofs in detail below.

A.1 Proof of Theorem 2.1

The derivation of Eqs. (2.8)–(2.9) can be found on page 100 and page
115 in [51], respectively. It remains to derive the Ricci equation (2.10). Indeed,
we have

0 = ‹R(X,Y, ξ, η)

= 〈‹∇X‹∇Y ξ, η〉 − 〈‹∇Y ‹∇Xξ, η〉+ 〈‹∇[X,Y ]ξ, η〉
= 〈∇⊥X∇⊥Y ξ, η〉 − 〈∇⊥X(SξY ), η〉 − 〈∇⊥Y∇⊥Xξ, η〉+ 〈∇⊥Y (SξX), η〉+ 〈∇⊥[X,Y ]ξ, η〉

= R⊥(X,Y, ξ, η)− 〈∇⊥X(SξY ), η〉+ 〈∇⊥Y (SξX), η〉,

in view of the definition for R⊥. Moreover, owing to the self-adjointness of Sη,
we have

〈∇⊥X(SξY ), η〉 = X〈SξY, η〉−〈SξY, tan(‹∇Xη)〉 = 〈SξY, SηX〉 = 〈Sη◦Sξ(Y ), X〉,
and similarly 〈∇⊥Y (SξX), η〉 = 〈Sξ ◦ Sη(Y ), X〉. Then Eq. (2.10) follows.
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A.2 Proof of Lemma 2.1

The connection 1-form W (Definition 2.8) is semi-skew-symmetric. It is
crucial to observe that a matrix B ∈ O(ν, n − ν) if and only if its transpose
B> takes the form:

B> = εn,νB
−1εn,ν . (A.1)

The signature matrix εn,ν is defined in Eq. (2.6).

We first observe that, for each Z ∈ O(ν, n− ν),

TZO(ν, n− ν) =
{
A ∈ gl(n;R) : Zεn,νA

> +Aεn,νZ
> = 0

}
. (A.2)

Indeed, let σ : (−ε, ε)→ O(ν, n− ν) be a C1-curve with σ(0) = Z. In view of
Eq. (A.1), we have

σ(t)> = εn,νσ(t)−1εn,ν .

Taking the derivative in t yields

σ̇(t)> = −εn,νσ(t)−1σ̇(t)σ(t)−1εn,ν .

Thus, evaluating the above at t = 0 and using the identity: Z> = εn,νZ
−1εn,ν ,

we have

σ̇(0)> = −Z>εn,ν σ̇(0)εn,νZ
>.

Since the elements of TZO(ν, n − ν) are in one-to-one correspondence with
σ̇(0) for such σ, Eq. (A.2) follows. As a consequence,

o(ν, n− ν) := TIdO(ν, n− ν) =
{
A ∈ gl(n;R) : εn,νA

> +Aεn,ν = 0
}
.

We now verify that W lies in the Lie algebra of the semi-orthogonal
group. Clearly, it suffices to prove that, for each a, b ∈ {1, . . . , n+ k},

εaωba = −εbωab .

Indeed, for a = i and b = α, this follows by the definition of ωαi in the fourth
equation of (2.11). For a = i and b = j, as ∇ is compatible with metric g, we
deduce from the first equation of (2.11) that

0 = ∂l〈∂i, ∂j〉 = 〈∇∂l∂i, ∂j〉+ 〈∂i,∇∂l∂j〉 = εjωij(∂l) + εiωji (∂l).

Finally, for a = α and b = β, it follows from a similar computation by using
the third equation of (2.11), thanks to the compatibility of ∇E with gE . This
completes the proof.
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A.3 Proof of Proposition 2.1

We divide the arguments into four steps.

1. We begin by observing that the definition of the connection 1-form W, i.e.,
Eq. (2.11), implies that

∇∂i∂j =
∑
l

ωlj(∂i)∂l, II(∂i, ∂j) =
∑
α

ωiα(∂j)∂α, ∇E∂i∂α =
∑
β

ωαβ (∂i)∂β .

One may deduce the following identities of the shape operator S:

S∂i∂α =
∑
j

εj〈S∂i∂α, ∂j〉∂j =
∑
j

εj〈II(∂i, ∂j), ∂α〉∂j =
∑
j

εjεαωiα(∂j)∂j .

2. Next, the Gauss equation (2.8) is equivalent to

R(∂i, ∂j , ∂k) = S∂iII(∂j , ∂k)− S∂j II(∂i, ∂k). (A.3)

Applying the symmetry of II twice (in the first and third equalities below), we
obtain

S∂iII(∂j , ∂k)− S∂j II(∂i, ∂k) = S∂iII(∂k, ∂j)− S∂j II(∂k, ∂i)

= S∂i
(∑

α

ωkα(∂j)∂α
)
− S∂j

(∑
α

ωkα(∂i)∂α
)

=
∑
α

∑
l

εαεl
(
ωkα(∂j)ω

l
α(∂i)− ωkα(∂i)ω

l
α(∂j)

)
∂l

=
∑
α

∑
l

(ωkα ∧ ωαl )(∂i, ∂j)∂l,

where the last equality follows from Lemma 2.1. On the other hand, the Rie-
mann curvature of the Levi–Civita connection on TM is computed directly
from the definition:

R(∂i, ∂j , ∂k) := ∇i∇j∂k −∇j∇i∂k +∇[∂i,∂j ]∂k

=
∑
l

{
∂i(ω

l
k(∂j))∂l − ∂j(ωlk(∂i))∂l + ωlk([∂i, ∂j ])∂l

+ ωlk(∂j)
∑
s

ωsl (∂i)∂s − ωlk(∂i)
∑
s

ωsl (∂j)∂s
}

=
∑
s

{
dωsk −

∑
l

ωlk ∧ ωsl
}

(∂i, ∂j)∂s.

Equating the preceding computations via Eq. (A.3), we conclude that

dωsk =
∑
b

ωkb ∧ ωbs.

3. Applying the same argument to RE(∂i, ∂j , ∂γ) and utilizing the Ricci equa-
tion (2.10), we deduce that dωαβ =

∑
b ω

α
b ∧ ωbβ .
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Furthermore, starting with the Codazzi equations (2.9), we have

0 =‹∇∂iII(∂j , ∂k)− ‹∇∂j II(∂i, ∂k)

=
∑
γ

∂i(ω
j
γ(∂k))∂γ +

∑
β

ωjβ(∂k)
∑
γ

ωβγ (∂i)∂γ −
∑
γ

∂j(ω
i
γ(∂k))∂γ

−
∑
β

ωiβ(∂k)
∑
γ

ωβγ (∂j)∂γ

=
∑
γ

{
∂i(ω

k
γ(∂j))− ∂j(ωkγ(∂i))−

∑
β

(
ωkβ(∂i)ω

β
γ (∂j)− ωkβ(∂j)ω

β
γ (∂i)

)}
∂γ

=
∑
γ

{
dωkγ(∂i, ∂j)− ωkγ [∂i, ∂j ]−

∑
β

(ωkβ ∧ ωβγ )(∂i, ∂j)
}
∂γ . (A.4)

In the penultimate equality, we have used the self-adjointness of II, i.e., ωiα(∂j) =
ωjα(∂i). The final equality follows from the definition of dωkγ and ωkβ ∧ ωβγ .

To compute the Lie bracket term in the last equality of Eq. (A.4), we
invoke the torsion-free condition of the affine connection:∑

γ

ωkγ [∂i, ∂j ]∂γ =
∑
γ

ωkγ
(
∇∂i∂j −∇∂j∂i

)
∂γ

=
∑
γ

∑
l

ωkγ
(
ωlj(∂i)∂l − ωli(∂j)∂l

)
∂γ

=
∑
γ

∑
l

(
ωlj(∂i)ω

l
γ(∂k)− ωli(∂j)ωlγ(∂k)

)
∂γ

=
∑
γ

∑
l

(ωkl ∧ ωlγ)(∂i, ∂j)∂γ ,

again owing to the symmetries of the second fundamental form and W ∧W.
Substituting it back to Eq. (A.4) yields that dωkγ =

∑
b ω

k
b ∧ ωbγ .

4. Combining Steps 1–3 together, we conclude

dωac =
∑
b

ωab ∧ ωbc.

Moreover, as an equation on Ω2
(
o(ν + τ, (n + k) − (ν + τ))

)
, Eq. (2.13) is

independent of the choice of moving frames. This completes the proof.

A.4 Derivation of the First Structural System (2.15)

We now present a derivation of the first structural system (2.15) and
show that it is equivalent to the torsion-free condition of the affine connection.

We compute the Lie bracket of the basic vector fields ∂i and ∂j in two
different ways. On one hand, we have

[∂i, ∂j ] =
∑
l

εlθl[∂i, ∂j ]∂l.
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On the other hand, the torsion-free condition of ∇ gives

[∂i, ∂j ] = ∇∂i∂j −∇∂j∂i
= ∇∂i

(
εj
∑
k

θk(∂j)∂k
)
−∇∂j

(
εi
∑
k

θk(∂i)∂k
)

=
∑
k

(
εkδkj∇∂i∂k − εkδki∇∂j∂k

)
=
∑
l

εl
(
ωil(∂j)− ω

j
l (∂i)

)
∂l,

where the last equality follows from the semi-skew-symmetry of the connection
1-form W (Lemma 2.1). Then

θl[∂i, ∂j ] = ωil(∂j)− ω
j
l (∂i). (A.5)

Now we observe

dθl(∂i, ∂j) = ∂i(θ
l(∂j))− ∂j(θl(∂i)) + θl[∂i, ∂j ] = θl[∂i, ∂j ],

and ∑
k

(θk ∧ ωlk)(∂i, ∂j) =
∑
k

(
θk(∂i)ω

l
k(∂j)− θk(∂j)ω

l
k(∂i)

)
=
∑
k

δki ω
l
k(∂j)− δkj ωlk(∂i) = ωli(∂j)− ωlj(∂i).

Utilizing Eq. (A.5), we obtain

dθl =
∑
k

θk ∧ ωlk.

As Eq. (2.15) is independent of the choice of local coordinates, This completes
the proof.

A.5 Proof of Theorem 5.1 in the C∞ Case

We now present a proof of the realization theorem in the C∞ case,
following Tenenblat’s arguments in [61] for the Riemannian case. We emphasize
that various modifications are necessary due to the semi-Riemannian geometry.
We divide the arguments into four steps.

1. We start with solving a Pfaff system for the bundle connection A on
TM ⊕ E. More precisely, we show that, for any x0 ∈ M , the following initial
value problem for first-order PDEs:

W = dA ·A−1, A(0) = A(x0) ∈ O(ν + τ, (n+ k)− (ν + τ)), (A.6)

has a solution A ∈ C∞(U ;O(ν + τ, (n+ k)− (ν + τ))) in some neighborhood
U of x0.
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Indeed, without loss of generality, assume that x0 = 0 in the local
coordinate {∂i}n1 . Also, take Z = {Zab } as the canonical frame field on gl(n+

k;R) ∼= R(n+k)2 , with signature inherited from ›M = Rn+kν+τ . For example,
Z := g̃0 is one suitable choice. Motivated by [61], we consider the following
map:

Λ(x,Z) : TxM × TZO(ν + τ, (n+ k)− (ν + τ)) −→ TZO(ν + τ, (n+ k)− (ν + τ)),

(X,m) 7−→ dxZ(m) + Z · W(X)|x,

which is abbreviated in the sequel as

Λ(x,Z) = dZ −W · Z. (A.7)

Using the characterization of tangent spaces of the semi-orthogonal group and
its Lie algebra (cf. the proof of Lemma 2.1), we see that Λ(x,Z) is well-defined.
Indeed,

Zg̃0(Λ(x,Z)(X,m))> + Λ(x,Z)(X,m)g̃0Z
>

= Zg̃0(dZ(m)> − Z>W(X)>) +
(
dZ(m)−W(X)Z

)
g̃0Z

>

= −
(
g̃0W(X)> +W(X)g̃0

)
+
(
Zg̃0dZ(m)> + dZ(m)g̃0Z

>)
= 0,

since

dZ(m) ∈ TZO(ν + τ, (n+ k)− (ν + τ)), W(X) ∈ o(ν + τ, (n+ k)− (ν + τ)).

Next, we define the following distribution in the Frobenius sense:

D(x,Z) := ker(Λ(x,Z)) ⊂ TxM × TZO(ν + τ, (n+ k)− (ν + τ)).

Our goal is to show that it is completely integrable. Assuming so, we can find
the unique maximal integral submanifold in some neighborhood of x0. Notice
that

D(0,Z) ∩
(
{0} ⊕ TZO(ν + τ, (n+ k)− (ν + τ))

)
= {0},

i.e., the distribution is transverse to the TM factor at point x0 = 0, because

Λ(x,Z)(0,m) = m.

In view of the classical implicit function theorem, D(x,Z) is locally a graph of
a smooth function A from TU to TO(ν + τ, (n+ k)− (ν + τ)), with x lies in
U , an open neighborhood of x0. This function A solves the Pfaff system (A.6)
in view of the definition of Λ(x,Z).

2. It now remains to prove the complete integrability of distribution D(x,Z).
By the Frobenius theorem, we show that D(x,Z) is involutive. That is, for any
(Xi,mi) ∈ D(x,Z) for i = 1, 2, the commutator stays in D(x,Z):

Λ(x,Z)[(X1,m1), (X2,m2)] = 0.
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Indeed, utilizing the following identity for the exterior differential:

dΛ(x,Z)(s1, s2) = s1(Λ(x,Z)s2)− s2(Λ(x,Z)s1)− Λ(x,Z)[s1, s2]

for s1, s2 ∈ TxU ⊕ TZO(ν + τ, (n + k) − (ν + τ)), we reduce the problem to
proving the identity:

dΛ(x,Z)((X1,m1), (X2,m2)) = 0. (A.8)

To this end, we compute dΛ(x,Z). Since

Λ = dZ −W · Z,

we have

dΛ = d(dZ)− dW · Z +W ∧ (dZ)

= −W ∧W · Z +W ∧ (Λ+W · Z) =W ∧ Λ,

where we have used the second structural system (2.13), together with the
definition of Λ in Eq. (A.7), for the second equality. As (Xi,mi) ∈ D(x,Z) for
i = 1, 2, we then have

dΛ(x,Z)((X1,m1), (X2,m2))

= (W|x ∧ Λ(x,Z))((X1,m1), (X2,m2))

=W(X1,m1)|xΛ(x,Z)(X2,m2)−W(X2,m2)|x Λ(x,Z)(X1,m1)

= 0.

This completes the proof of Eq. (A.8), which implies that the Pfaff system
(A.6) is solvable.

3. Now, define

˜Θ = (θ1, . . . , θn, 0, . . . , 0)> ∈ Ω1(Rn+k)

and, for x0 ∈M , consider the Poincaré system:

df = ˜Θ ·A, f(x0) = f0, (A.9)

where f0 ∈ C∞(M ;›M) and dx0f0(v) 6= 0 for v ∈ Tx0M \ {0}. Suppose that
this system is solvable. Then, as A takes values in O(ν + τ, (n+ k)− (ν + τ)),
det(A) = ±1, by using Eq. (A.1). In particular, A is invertible. It follows from
Eq. (A.9) that the linear map df has rank n, so that f is an immersion indeed.

Solving for f from Eq. (A.9) is equivalent to showing that ˜Θ · A is an
exact 1-form. For simply-connected M , by the Poincaré lemma, it suffices to
verify that d(˜Θ ·A) = 0; that is, it is a closed 1-form. Indeed,

d(˜Θ ·A) = d˜Θ ·A− ˜Θ ∧ dA,

and we can compute the second term by ˜Θ ∧ dA = (˜Θ ∧ W) · A, thanks to
the Pfaff system (A.6) solved in Steps 1–2 above. Thus, the exactness of ˜Θ ·Afollows directly from

d˜Θ = ˜Θ ∧W,
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which is just the first structural system (2.15). Thus, we have established the
solvability of the initial value problem for the Poincaré system (A.9).

4. With the immersion f from the Poincaré system, we now identify the normal

bundle TM⊥ := f∗T›M/TM with the given bundle E, and identify the sec-
ond fundamental form induced by f with the given symmetric tensor field II.
Moreover, we can deduce the uniqueness of the local immersion up to the rigid
motions of Rn+kν+τ , i.e., modulo the actions by the semi-Riemannian congruence
group Rn+k oO(ν + τ, (n+ k)− (ν + τ)).

4(a). First of all, define an orthonormal frame {∂̃a}n+k1 on T›M via maps

f and A solved by the Pfaff and Poincaré systems. We denote by
{

∂
∂Za

}n+k
1

the canonical orthonormal basis on›M = Rn+kν+τ with respect to g̃0 = εn ν⊕εk τ .
In this basis, we set

∂̃i := df(∂i), ∂̃α :=
∑
b

Aαb
∂

∂Zb
, (A.10)

where the definition of {∂̃a} is independent of the choice of bases on›M : Recall
that, for each x ∈ M , A(x) lies in O(ν + τ, (n + k) − (ν + τ)) ⊂ gl(n +

k;R) ∼= EndT›M , the group of linear transformations on T›M . Using a further

identification: EndT›M ∼= T ∗›M ⊗ T›M , we view A(x) as a linear map from

T›M to itself. From this perspective, ∂̃α coincides with Aα, i.e., the normal

component of A as a T›M -valued function defined on M × T›M . Thus, Eq.
(A.10) is equivalent to

∂̃ = (df)] ⊕ norA, (A.11)

where ] : T ∗›M → T›M is the canonical bundle isomorphism turning a 1-form
into the corresponding vector field. This gives us an intrinsic definition of frame
{∂̃a}.

Now we verify that {∂̃a} is indeed an orthonormal frame. First, using
the Poincaré system (A.9) defining f , together with the characterization of
the semi-orthogonal group (cf. Eq. (A.1)), we have

g̃0(∂̃i, ∂̃j) = g̃0(df(∂i),df(∂j)) = g̃0(˜Θ(∂i)A, ˜Θ(∂j)A)

= ˜Θ(∂i)A
>g̃0A˜Θ(∂j)

> = ˜Θ(∂i)g̃0˜Θ(∂j)
>

= (εn,ν)ij := εiδij .

Also, for the normal directions, using the shorthand notations in Eq. (A.11),
we have

g̃0(∂̃α, ∂̃β) = (g̃0(norA,norA))αβ = nor(A>g̃0A)αβ = (εk,τ )αβ = εαδαβ .

Finally, it follows from the Poincaré system (A.9) that

g̃0(∂i, ∂α) = g̃0(˜Θ ·A(∂i), A
α) = (˜Θ(∂i))

>(A>g̃0A)α = (g̃0)αi ≡ 0,
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since g̃0 is a diagonal matrix. The orthonormality of {∂̃a} now follows.

4(b). Next, we identify the normal bundle induced by f , written as

TM⊥ := f∗T›M/TM (Convention 2.2), with the prescribed vector bundle E.
For this purpose, we define the following identification map on a trivialized
chart U ⊂M :

I : (U ⊂M)× (F ∼= Rk) −→›M,

(x, ξ) 7−→ f(x) +
∑
β

ξβ ∂̃β .

Indeed, dI : TU⊕TF → T›M coincides with df+norA; equivalently, one
can write dI(∂a) = ∂̃a for each a ∈ {1, . . . , n+k}. In particular, dI(TU) ⊂ TM
and dI(F ) ⊂ TM⊥, which indicates that the identification map I preserves

the horizontal and vertical subspaces of the vector bundles TM ⊕E and T›M .
Moreover, as f is an immersion (justified in Step 3 above), we deduce that I is
a diffeomorphism, by shrinking chart U if necessary. Thus, we have obtained
an identification of E with TM⊥ in the trivialized local charts.

In addition, by the construction of the moving frame {∂̃a} on T›M in
Eq. (A.10), we have

I∗g̃0(
∑
i

U i∂i +
∑
α

Uα∂α,
∑
j

V j∂j +
∑
β

V β∂β)

= g̃0(
∑
i

U idf(∂i),
∑
j

V jdf(∂j)) + g̃0(
∑
α

Uα∂̃α,
∑
β

V β ∂̃β)

=
∑
i

∑
j

U iV j g̃0(∂̃i, ∂̃j) +
∑
α

∑
β

UαV β g̃0(∂̃α, ∂̃β)

= g(U |TM , V |TM ) + gE(U |E + V |E)

for any U, V ∈ Γ (T›M). It follows that I is an isometry between TU ⊕E and

T›M :
I∗g̃0 = g ⊕ gE

as the block direct sum of matrices. Thus, f is a local isometric immersion.

4(c). Now, we identify the second fundamental form and the normal
connection induced by f with II and∇E , respectively. This is done via Cartan’s
formalism for the isometric immersion f .

Let f : (V ⊂ M, g) → (Rn+k, g̃0) be the isometric immersion as above.

We write θ̃ = (θ̃1, . . . , θ̃n+k) ∈ Ω1(Rn+k) ∼= C∞(›M ;T ∗›M ⊗ T ∗›M) as the co-

frame of {∂̃a}n+k1 . Recall from §2.3 that the GCR system for f are equivalent

to the second structural system with respect to ∂̃ or θ̃. In particular, the

corresponding connection 1-form on ›M for the Levi-Civita connection is›W =

ñ
ω̃ij ω̃

α
i

ω̃iα ω̃
β
α

ô
=

θ̃j(tan‹∇•∂̃i) ‹S‹∂α ∂̃i
−‹S‹∂α ∂̃i θ̃β(∇⊥• ∂̃α)

 ; (A.12)
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see Eq. (2.14). It satisfies›W = {ω̃ab } ∈Ω1(o(ν + τ, (n+ k)− (ν + τ)))

= C∞(›M ;T ∗›M ⊗ o(ν + τ, (n+ k)− (ν + τ))),

where ‹S is the shape operator associated to f , and ∇⊥ is the projection of ‹∇
onto the normal bundle TM⊥. Also, by the torsion-free condition of ‹∇, the
first structural system (2.15) holds:

dθ̃ = θ̃ ∧›W. (A.13)

Therefore, by comparing the coordinate-wise representations ofW and›W, i.e.,
Eqs. (2.14) and (A.12), in order to identify (‹S,∇⊥) with (S,∇E), it suffices to
establish

I∗›W =W. (A.14)

Indeed, we pullback Eq. (A.13) under I. On one hand,

I∗(dθ̃) = d(I∗θ̃) = d(f∗θ̃) = d˜Θ = ˜Θ ∧W, (A.15)

where we have used the commutativity of pullback and exterior differential,

so that I respects the orthogonal splitting of T›M and TM ⊕E, the duality of
df(∂i) = ∂̃i, as well as the first structural system on TM ⊕ E. On the other
hand,

I∗(θ̃ ∧›W) = I∗θ̃ ∧ I∗›W = ˜Θ ∧ I∗›W, (A.16)

owing to the distributivity of the pullback operation with respect to the wedge
product, so that I∗θ̃ = f∗θ̃ = ˜Θ as above. Eq. (A.14) follows directly from
Eqs. (A.15)–(A.16).

4(d). Finally, we prove the uniqueness of local isometric immersions
up to rigid motions of the semi-Euclidean space. It is a direct consequence of

the arguments in Step 3. Indeed, if f ′ : (V, g) → (›M, g̃0) is another isometric
immersion on V (a trivialized local chart) with f ′(q′) given, then, for any local

frame {∂′a}, we can take a rigid motion that transforms both q to q′ and {∂̃a} to

{∂̃′a}; that is, a translation composed with an element of O(ν+τ, (n+k)−(ν+
τ)). Then the argument follows from the uniqueness of solutions of the Pfaff
system (which is based in turn on the uniqueness of the maximal integral
submanifold found by the Frobenius theorem), as well as the uniqueness of
solutions of the Poincaré system up to an additive constant.

We can now conclude the realization theorem in the C∞ case from Steps
4(a)–4(d).
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Appendix B Proof of Theorem 3.3

In this appendix, we prove Theorem 3.3 (the generalized quadratic the-
orem on LCA groups) for the theory of compensated compactness, a further
extension of the classical quadratic theorem in [49,59]. First, we point out
that the underlying strategy for the general case is similar to that in [49,59],
in which separate estimates are derived in the Fourier space Ĝ for the low-
frequency region (i.e., in a compact set Ξ around 0) and the high-frequency
region (i.e., in the non-compact set Ĝ \Ξ). Assumptions (i)–(iii) are required
only for controlling the high-frequency region. Notice that the high-frequency
region always exists unless Ĝ is compact, which is equivalent to the condition
that G is discrete, for which Theorem 3.3 trivially holds.

Proof of Theorem 3.3. By substituting uε with uε − u as in the proof of
Theorem 3.1, it suffices to assume that u ≡ 0. We divide the proof into five
steps.

1. Since uε ∈ L2
c(G;CJ) implies uε ∈ L1(G;CJ), by the Riemann–Lebesgue

lemma on LCA groups, we can find a compact set Ξ b Ĝ such that |ûε(ξ)| ≤ α
for ξ ∈ Ĝ\Ξ, for each α > 0 (cf. Tao [60]). In particular, sup {|ûε(ξ)| : ξ ∈ Ĝ} ≤
M . On the other hand, for any φ ∈ L2(G;CJ), by the Plancherel formula, we
have ∣∣∣ ∫

G

uεφ dµG

∣∣∣ =
∣∣∣ ∫
Ĝ

ûεφ̂ dµĜ

∣∣∣,
which converges to zero as ε → 0 by assumption (C1). Thus, choosing φ̂ =
sgn(ûε)χΞ with sgn(z) := z

|z| for z 6= 0, we obtain∫
Ξ

|ûε|2 dµĜ ≤M
∫
Ξ

|ûε|dµĜ = M
∣∣∣ ∫
Ĝ

ûεφ̂dµĜ

∣∣∣ −→ 0.

Therefore, for the quadratic polynomial Q, we deduce∫
Ξ

|Q ◦ ûε|dµĜ −→ 0. (B.1)

For the subsequent development, notice that there is a freedom of enlarging
Ξ: It can be chosen as any large enough (with respect to µĜ) compact subset

of Ĝ containing 0.

2. In this step, we establish the following claim:

Claim: Given any δ > 0 and any compact subset K b Ĝ such that 0 /∈ K, there
exists a constant Cδ,K ∈ (0,∞) so that, for any λ ∈ CJ and η ∈ K,

Re{Q(λ)} ≥ −δ|λ|2 − Cδ,K|m(η)(λ)|2, (B.2)

provided that Re(Q) ≥ 0 on ΛT . Meanwhile, under the same conditions for δ
and K,

Im{Q(λ)} ≥ −δ|λ|2 − Cδ,K|m(η)(λ)|2 (B.3)
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when Im(Q) ≥ 0 on ΛT . Notice that such a compact subset K exists, since Ĝ
has locally compact topology.

Indeed, observe that the claim holds for λ = 0. For λ 6= 0, we prove by
contradiction. If the statement were false, there would exist δ0 > 0 such that,
for each n ∈ N, there exist λn ∈ CJ and ηn ∈ K so that

Re{Q(λn)} < −δ0|λn|2 − n|m(ηn)(λn)|2. (B.4)

Notice that this inequality is 2-homogeneous in λn; in particular, it is invari-
ant under the scaling: λn 7→ cλn for any c ∈ C \ {0}. Thus, without loss of
generality, we may require |λn| = 1 for all n, so that {λn} converges to some
λ∞ ∈ CJ of norm 1, after passing to a subsequence.

In this case, |Re(Q(λn))| is bounded uniformly in n (say, by C0) so that

n|m(ηn)(λn)|2 ≤ C0 − δ0.

This forces |m(η∞)(λ∞)| = 0, where η∞ ∈ K is a limit of {ηn}, after passing
to a further subsequence if necessary. Indeed, the subsequential convergence
is guaranteed by the fact that Ĝ is Hausdorff, which is a part of the definition
of LCA groups. The assumptions on K ensure that η∞ 6= 0. Thus, by the
definition of the cone in Eq. (3.19), λ∞ ∈ ΛT . However, this implies

Re{Q(λ∞)} ≤ −δ0,

which contradicts the assumption that Re(Q) ≥ 0 on ΛT . Thus, the claim is
proved for Re(Q). The arguments for Im(Q) are exactly the same, hence are
omitted here.

3. Now, employing the claim in Step 3, we prove the following statement:
Whenever Re(Q) ≥ 0 on ΛT ,

lim inf
ε→0

∫
Ĝ\Ξ

Re(Q ◦ ûε) dµĜ ≥ 0. (B.5)

Similarly, for Im(Q) ≥ 0 on ΛT ,

lim inf
ε→0

∫
Ĝ\Ξ

Im(Q ◦ ûε) dµĜ ≥ 0. (B.6)

To prove this statement, we invoke assumption (C2) on the Fourier
multiplier. As {[Φ∗m]ûε} is pre-compact in L2(Ĝ;CJ) and {ûε} converges to
zero weakly in L2 (by the Plancherel formula), we have∫

Ĝ\Ξ

∣∣m(Φ(ξ))ûε(ξ)
∣∣2 dµĜ(ξ) −→ 0.

Take η = Φ(ξ) ∈ K and λ = ûε(ξ) ∈ CJ in Eq. (B.2) in Step 2. It shows that,
for each δ > 0, there exists 0 < Cδ,K <∞ such that

Re(Q ◦ ûε(ξ)) > −δ|ûε(ξ)|2 − Cδ,K
∣∣m(Φ(ξ))ûε(ξ)

∣∣2 for ξ ∈ Ĝ \Ξ.
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Then, integrating over Ĝ \Ξ and sending ε→ 0, we have

lim inf
ε→0

∫
Ĝ\Ξ

Re(Q ◦ ûε) dµĜ ≥ −δ sup
ε≥0
‖ûε‖2L2(Ĝ\Ξ)

≥ −δM

for a universal constant M < ∞, where we have used the precompactness of
{ûε} in L2(Ĝ;CJ), which is implied by assumption (C1) and the Plancherel
formula. As δ > 0 is arbitrary, Eq. (B.5) is proved. The proof for the imaginary
part, i.e., Eq. (B.6), holds analogously.

4. To conclude the theorem, note that, by changing Q 7→ −Q in Eq. (B.5),
the following inequality holds:

lim sup
ε→0

∫
Ĝ\Ξ

Re(Q ◦ ûε) dµĜ ≤ 0 for Re(Q) ≤ 0 on ΛT . (B.7)

By assumption (C3), i.e., Re(Q) = 0 on ΛT , inequality (B.7) together with
(B.5) verifies the assertion outside a compact set Ξ, i.e., limε→0

∫
Ĝ\Ξ Re(Q ◦

ûε) dµĜ = 0. Moreover, in Step 1, the same result on Ξ has been established
in Eq. (B.1). Thus, in view of the Plancherel formula, we have

lim
ε→0

∫
G

Re(Q ◦ uε) dµG = 0.

As in Steps 2–3, the analogous statement for Im(Q ◦ uε) can be established
similarly. This completes the proof.
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